ADACS1309

ESD-TR-76~16I

MINIMIZING THE NAMING FACILIT .o
REQUIRING PROTECTION IN A COMPUTING UTILITY

Computer Systems Research Division of Project MAC
Massachusetts Institute of Technology
Cambridge, MA

September 1975

Approved for Public Release;
Distribution Unlimited,

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT-SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BOULEVARD

ARLINGTON, VA 22209

ARPA Order No, 264I




1..

r”r"""

/10/ "\ The views and conclusions contained in this document are those of the authors
_” and should not be interpreted as necesscrily representing the official policies,
;\Yv/ either expressed or implied, of the Defense Advanced Research Projects Agency

or the U.S. Covernment,
r

x‘&w

‘;

LECAL NOTICE

When U.S. Covernment drawings, specifications or other data ore used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever, and
the fact hat the government may have formulated, furnished, or in any way sup=-
tlied th * said drawings, specifications, or other data is not to be regarded by
L- mphcohon or otherwise as in ony manner licensing the holder or any other person

t ornﬁ\ veying any rights or permission to manufacture, use, or sell any patented
tion that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

"This technical report has been reviewed and is approved for publication."

' ‘, Al }

St i i
_ /(46[0}_«»(, zf‘ /;LL‘L
‘R R. SCHELL Major, USAF WILLIAM R. PRICE, Captain, USAF
rhniques Eng1neer1ng Division Techniques Engineering Division U

FOR THE COMMANDER f

\ e |
;g A/) coalir

STANLEY .J DERESKA, Colonel, USAF /bfz_‘, 7\("

Chief, Techniques Engineering Division
Information Systems Technology -
Applications Office M ‘o // C

< leg £ AN,? o'

(f/g\\

/% Vs

-

\
Il"——.-. o — ——ﬂf‘



‘SECURITY CLASS'FICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE R

BEFCRE COMPLETING FORM
MT'S CATALO

—"]z. GOVT ACCESS o .17
R-76-161 | Z lﬂ ( L )
ld. TITLE Cand Subtitlia) OVERE

MINIMIZING THE NAMING FACILITIES
REQUIRING PROTECTION IN A COMPUTING
UTILITY » . = :

(SR IUT IS W ST VY Drmgi

T 6. PERFOKMING ORG. REPORT NUMBER

,__W o = 8 CONTRACT OR GRANT NUMBER(e) —
Rich é—él / F19628-74-C-0193 et
/ Richard Glenn Brott ARPA Order No. 2641
9. PERFORMING ORGANIZATION NAME AND ADDRESS . 5 1 T.PROBJEERCST. TASY.
Computer Systems Rosearch Division of Project MAC "

Massachusetts Institut~ of Technology CDRI Item A009
Cambridge, MA g

7). CONTROLLING OFFICE ' | € AND ADDRESS RTDATE ]
Deputy for Ccmmon ¢vd Management Systems ‘ // tamber 8975
Hq Electronic Sys1 ms Divisien 't )
Hanscom AFB, MA 0173} 129 (/2)

T4, MONITORING AGENCY NAME & ADDRESS(!f different from Controiting Oflice) 15. SECURITY CL ASS. (of thy

Defense Advanced Research Projects Agency o
[400 Wilson Boulevard UNELAS ISR /632

Arlingfon, VA 22209 1Sa, gg&_aals.lglcnaon. wamtva

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for Public Release; Distribution Unlimited—

(5) F1542¢- 1#-C-9193,

fi
17. DISTRIBUTION STATEMENT (of the abatract entered lnrblock 20, -4t ditterent from Report)

// HRR] Ordel=2691

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree eide if neceeeary and identify by block number)

computing utility, Multics, security kernel, protection,
naming facilities

20.’\A BSTRACT (Continue on reveree eide If neceesay and identily by biock number)

This thesis examines the various mechanisms for naming the
information objects stored in a general-purpose computing
utility, and isolates a basic set of naming facilities that

must be protected to assure complete control over user
interaction and that allow desired interactions among users

to occur in a natural way. Minimizing the protected namin
facilities consistent with the functional objective of (cont.)

——
DD , 55", 1473  roiTion oF 14OV 83 IS OBSOLETE

JAN T3
- 0 7€

-



\ SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

p'

20. . Cont.

controlled, but natural, user interaction contributes to defining
a security kernel for a general-purpose computing utility. The
security kernel is that complex of prcgrams that must be correct
if control on user interaction is to be assured.

The Multics system is used as a test casc, and its segment naming
mechanisms are redesigned to reduce the part that must be pro-
tected as part of the supervisor. To show that this smaller
protected naming facility can still support the complete
functionality of Multics, a test implementation of the design

is performed. The new design is shown to have a significant
impact on the size and complexity of the Multics supervisor.




MINIMIZING THE NAMING FACILITIES REQUIRING PROTECTION
IN A COMPUTING UTILITY

Richard Glenn Bratt

September 1975

D D (.,
”1 0CT 28 1976
I8 |

The research reported here was sponsored in part by Honeywell
Information Systems Inc., and in part by the Air Force
Information Systems Technology Applications Office (ISTAO), and
by the Advanced Research Projects Agency (ARPA) c¢f the Department
of Defense under ARPA order No. 2641 which was monitored by ISTAO
under contract No. F19628-74-C-0193.

4 MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

DISTAIBUTION STATEMENT F-
Approved fer public rele: -,
Distribulion Unlimitedi




I would 1like to express my gratitude to my thesis
supervisor, Michael D. Schroeder, for his helpful suggestions
and guidance throughout the conception and execution of this

thesis.

Thanks are also due many other members of the Computer
Systems Research group at M.I.T.'s Project MAC for their helpful
comments and suggestions. In particular, I would like to extend
my thanks to Doug Wells and David Reed for their help in
isolating two programming bugs in the initial Implementation of

the design presented in this thesis.

I would also like to take this opportunity to thank my
girlfriend, Claire, for her kind help and gentle understanding

during the past months.

This research was performed in the Computer Systems
Research Division of Project MAC, an M.I.T. Interdepartmental

Laboratory. It was sponsored in part by Honeywell Information

Systems Inec., and in part by the Air Force Information Systems

Technology Applications Office (ISTAO), ard by the Advanced
Research Projects Agency (ARPA) of the Department of Defense
under ARPA order No. 2641 which was monitored by ISTAO under
contract No. F19628-74-C-0193.

c wh=




MINIMIZING THE NAMING FACILITIES REQUIRING PROTECTION
L IN A COMPUTING UTILITY*

by

Richard Glenn Bratt

ABSTRACT

This thesis examines the various mechanisms for naming
the information objects stored in a general-purpose computing
utility, and isolates a basic set of naming facilities that must
be protected to assure complete control over user interaction and
that allow desired interactions among users to occur in a natural
way. Minimizing the protected naming facilities consistent with
the functional obi:ctive of controlled, but natural, user
interaction contributes to defining a security kernel for a
general-purpose computing utility. The security kernel is that
complex of programs that must be correct if control on user
interaction is to be assured.

The Multics system is used as a test case, and its
segment naming mechanisms are redesigned to reduce the part that
must be protected as part of the supervisor. To show that this
sctaller protected naming facility can still support the complete
functionality of Multics, a test implementation of the design is
performed. The new design 1is shown to have a significant impact
on the size and complexity of the Multics supervisor.

¥This report is based upon a thesis of the same title submitted
to the Department o. Electrical Engineering, Massachusetts

Institute of Technology, on July 7, 1975 in partial fulfillment
of the requirements for the degree of Master of Science.

a3




Section

ACKNOWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS
LIST OF FIGURES

Chapter I: Introduction
. Brief Statement of the Prcblem and Result
Related Work
Background
Plan of Thesis

RN OO~ =W N

-—

Chapter II: Name Space Management in a Computing Utility
i Basic Information Storage and Protection Model
Global Machine-Oriented Names
Global User-Oriented Names
Local Machine-Oriented Names
Local Descriptors
Local User-Oriented Names
Summary

NN =
DWW O OO

w W
n O

Chapter III: A Model of the Multics System
3iadt Storage System Model
3.2 Information Protection Model
3 Address Space Model
3.4 Reference Name Space Model

S Esww
ML) O & o

Chapter 1IV: Redesign of the Security Kernel
4.1 Dependence on the Reference Name Manager
y. 2 Source of the Dependence

4.3 Removal of the Dependence

y,3.1 Overview of the Design

2 Details of the Design

moval of Pathname Processing

1 Parameters to Ring Zero

2 Links

3 Internally Generated Pathnames

m

(S 00, R0, BN i —g
ww o o3

: : Error Conditions
4.5 Summary of the Design

3
e
4
Y
Y
Y
u

Chapter V: Redesign of Non-kernel Functions
Reference Name Manager Design
Pathname Resolution
Interface Compatibility

Chapter VI:  Implementation
Plan
Impact on System Complexity
Impact on System Performance

b




Chapter VII:

Appe: 1ix
Apperndix
Appendix
Appendix
Appendix
Appendix
Appencix
Appendix
Appendix I:

0.1 Res

1:2 Cop

A3 Tra

HITQOQTMMDOOmW>

BIBLIOGRAPHY

Conclusion

Mult - c¢s Known Segment Table

Proposed Known Segment Table

Proposed Address Space Manager Interface
Example

Size of Programs

Performance Data

Ring Zero Interface Complexity Data

The Address Space Manager Programs
Unimplemented Address 3pace Manager Functions
erved Switch

y Switch

nsparency Switches

91

94
96
9
98
100
102
104
W7
ey
185
126
127

128




Global Machine-Oriented Names
Global User-Oriented Names
Local Machine-Oriented Names
Local Descriptors

Local User-Oriented Names

Action of Initiate_ for Directories




Introduction

il Brief Statement of the Problem and Result

This thesis investigates the class of computing utility

mechanisms that deal with naming information objects within a

computing utility. Qur goal is to wunderstand the various

functions played by name spaces in contemporary computing

utilities and to decide which of these functions must be

protected to assure complete control over user interaction. The
Multics system, which is a sophisticated computing utility, will
be wused to test the validity of our conclusions. (1) We will
find that Muitics protects several mechanisms that we claim need
not be protected to assure control over user interaction. To

substantiate our claim we will present a redesign of Multics that

sy i

allows these mechanisms to be unprotected without sacrificing the |
ability to control user interaciion. The resulting reduction in
the amount of code that must be protected to assure control over
user interaction contributes to defining a security kernel for I

Multies.

(1) The Multics system was developed as a prototype computing
utility by Honeywell Information Systems, Inc., and M.I.T.'s
Project MAC. A complete bibliography of the Multics system may
be found in [M2].

sTe



5 oy el z - - - & -

1.2 Related Work

The Multics system [C1, C2, M2, 01, S3] is an example
ot a sophisticated state-of-the-art computing utility. As part
of a general investigation into how one goes about tne task of
certifying the security of large systems, the Computer Systems
Research Division of Project MAC at M.I.T. 1is attempting to
produce a certifiably secure version of the Multics system, by
redesigning Multics to minimize the collection of programs that
must be correct to assure complete control over user
interactions. As a result, this collection of programs, the
Multics security kernel, has been steadily decreasing in size and
complexity. A recent masters thesis [J1] describes how a Multics
security kernel that does not include a dynamic linking mechanisw
was developed. This thesis reports the results of another effort

to reduce the size of the Multics security kernel.

T8 Background

A computing utility is any computer system, or network
of interconnected computing systems, that provide general
computing services to a community of users. fnong the most
important services provided by computing utilities are facilities
that allow users to share, store, retrieve, and process

information. To facilitate the manipulation and sharing of

stored information, computing utilities must support a multitude




of name spaces. These name spaces, which maintain a
correspondence between a collection of names and the information
they denote, provide organization of the collections of

information processed in the system.

We find many name spaces at all levels of a computing
utility. The base computers on which a computing wutility runs
implicitly employ a name space that maps a set of integer names
(actually a set of representations of integers) called addresses
into a set of words of computcur memory, Similarly, direct access
mass storage devices such as magnetic disks and drums define a
name space that maps physical storage addresses into records of
bits. At a higher level, most computer utilities support a name

space that allows its users to denote files of information by

character string names such as "John's_file". Detailed analysis

of most systems revealc many other examples of name spaces.

We have stated that a computing utility provides
information processing services to a community of users. Since
we have not placed any restrictions upon the composition of this
user conmmunity, we must assume that these users harbor ill will
toward e.ch other or toward the computing utility itself. This
ill will can manifest itself in any of three ways. A malicious
user might attempt to use, modify, or prevent others from using
or modifying information in the computing utility. Even in a

computing utility shared by a non-mz.icious user community, one




user might accidently compromise another user's information or

computation.

Any general computing wutility must prevent suci:
undesirable interactions between its users. To this end it must
secure iis users against unauthorized use, modification, or
denial of wuse of the information they process in the computing
utility. This requires that the computing utility implement an
authorization mechanism that allows those user-information
interactions that are to be permitted to be specified. The
information supplied to the system through this authorization
mechanism must then be used by an access control mechanism that
intercepts all user-information interactions and verifies that

they are authorized.

The presence of access authorization and control
mechanisns in a computing utility does not prima facie secure its
users from harmful, uncontrolled interactions with other users of
the computing utility. It must be established that these
protection mechanisms do indeed perform their intended task
without error. It further must be established that these
information protection mechanisms cannot be subverted, damagea,
or .circumvented. Only then may users of the computing utility

process sensitive, irreplaceable, or timely information with

reasonable freedom from fear for its security.




We identify that subset of the mechanisms of a
computing utility which must be correct in order to guarantee

the security of the information contained in the computing

urility as its security kernel.

Clearly the task of establishing the correctness of the
security kernel of a computing utility must increase
monotonically with its size and complexity. For this reason it
would be advantageous to know which computing utility mechanisms
need be included in the security kernel for intrinsic reasons. A
mechanism has an intrinsic need to be included in the security
kernel ol a computing system if and only if it cszn be used by one
computation to influence another computation. The access
authorization and control mechanisms of a computing utility are
the two most obvious examples of mechanisms that must be included
in a security kernel. If a computing utility supports a shared
name space for identifying stored information, then this
mech.aism, by virtue of its commonality, also allows one
computation to influence another and hence must be considercd

part of the security kernel of the computing utility.

Mechanisms that have no intri..sic need to be protected
often are included 1in the security kernel of a system, Common
reasons for incorporating a mechanism in the security kern2l of a
computirg utility when it has no intrinsic need to be protected

include the desire to protect the mechanism from damage, the

=1 fia




desire to minimize cross domain calls, and the need to protect
the mechanism because some security kernel mechanism happens to
depend upon its correct operation. The motivation behind
ir2luding a mechanism in the security kernel of a computing
utility when it has no security-related need to be protected must
be carefully analyzed, as the inclusion of the mechanism in the
security kernel contributes to the complexity of the security
kernel. Removing the mechanism from the security kernel would
have the advantage of 1lessening the task of establishing the
correctness of the security kernel. This thesis will evaluate
the need for each of the major name -spaces supported by a typical
computing utility to be included in its security kernel. We will
use the knowledge thus accumulated to simplify the Multics

security kernel.

1.4 Plan of thesis

In Chapter II we present a model of a computing
utility. This model pays particular attention to those
mechanisms that are involved in naming information stored 1in a
computing utility. We begin by defining a very simple
information storage and protection model. Through successive
enhancement of this model we arrive at a model that we feel
represents the essence of name space management in a contemporary
computing utility. As we add each new name space to our model,

we consider its basic raison d'etre, the advantages and

oLy




disadvantages it provides over the previous model, and most

importantly its impact upon which name spaces in the model must

be protected as a part of the security kernel.

Chapter III L gins our case study of name space
management in Multies. We identify the major name spaces
maintained by Multics that deal with naming s*ored information
and establish a correspondence between these name spaces and the
name spaces of our model. Having established this
correspondence, we attempt to verify that only the naming
functions identified in our model as security sensitive are
implemented by the Multics security kernel. This investigation
reveals that the Multics reference name space, a name space used
in resolving inter-procedure references, is implemented in the
Multics security kernel although it has no intrinsic need to be
protected. (1) The reasons behind this flaw in the modularity of

the Multics system are investigated.

In Chapter IV we develop a design that removes
reference name management from the security kernel of the Multics
system. In so doing, we also remove several functions related
to the management of the Multies global naming hierarchy from the
Multics security kernel. The most notable of these are that

function which allows the security kernel to name segments by

(1) The research reported in this thesis is based upon the M.I.T.
Multics system of December 1974, Multics system 24.2.

=t =




hierarchy pathnames and that function which allows multiple
paths 1in the Multics storage system hierarchy to designate the
same object. In the course of removing these functions from the
security kernel, our design drastically chsnges the Multics
security kernel interface. Finally, we discuss the impact of

this design upon the security kerrel.

Chapter V discusses the implications of our security
kernel design upon code running outside of the Multics security
kernal. We discuss the principles invelved 1in designing a
reference name manager which runs outside of the Multics security
kernel. In the course of this presentation we uncover an
important consideration in moving ény module out of the Multics
security kernel, Specifically, Multics security kernel
procedures are guaranteed to run to completion once invoked.
This allows them to make assumptions that would be 1invalid were
they to be executed in the interuptable environment outside of
the security k->rnel. Following this discussion, we show how the
functions c¢f pathname resolution, and storage system link
processing may be implemented outside of the Multics security
kernel. Finally, we discuss the need for simulating the old

security kernel interface.

In Chapter VI we discuss the results of a test

implementation of the security kernel we have designed. This

test implementation allowed us to measure of the impact of cur

sl =




design upon the complexity and performance of the Multics systen.
We report this ~ata along with a description of our test

implementation.

We have 1included nine appendices in this thesis.

Appendix A details the structure of the data base for the Multics

24 .2 address space manager and reference name manager. Appendix

B shows the impact of our design upon the structure and content
of this data base. Appendix C summarizes the new address space
manager 1interface proposed in this thesis. 1In appendix D we
present an example of the use of this new interface. Appendix E
summrarizes the impact of this thesis upon the size of the Multics
security kernel. 1In appendix F we report the details and results
of our performance comparison between Multics system 24.2 and our
test system. Appendix G summarizes the effect of our thesis upon
the complexity of the Multics security kernel interface.
Appendix H presents the programs of our redesigned address space
manager for the reader's perusal. Appendix I discusses several
functions supported by the Multics system 24.2 address space
manager that, for the sake of simplicity, were not considered in

the body of the thesis,




Chapter II

Name Space Management in a Computing Utility

In this chapter we will develop a model of a somputing
utility. Our emphasis will be wupon the roles rlayed by name
spaces in contemporary computing utilities. This model will be
developed by adding successive layers to a central model of
information storage and protection. After we add each successive
mechanism or name space to this model, we will present a graphic
representation of the current state of the model. Each node in
these illustrations will represent a class of names. The naine
space binding one group of names to another group of objects or
names will be represented by an undirected line. If a name space
must be protected to control user interaction, then the 1line
representing it will be constructed from the symbol ".", 1If the
name space need not be protected it will be represented by a line

composed of the symbol ".",

2l Basic Infor-.ation Storage and Protection Model

Some basic notion of information storage and protection
must be at the heart of any computing utility model. Im _eur
model the basic vessel of information storage is a segment. In

theory, we do not restrict the amount of information a segment

-




may contain. In practice, the amount of information a segment
may hold will be bounded by a combination of hardware and

software limitations.

Segments will also serve as our basic unit of
information protection. We require that any information
protection must apply uniformly to all information stored within
a segment. We will choose an access control 1list (ACL) Dbase4d
information protection scheme for our model, The basic
motivation behind tuis choice is that Multics, our test case

system, uses an access control list protection scheme.

We assume that an access control list is associated
with every segment. This access control 1list encodes the
authority of each principal in the computing utility to use or
modify the contents of the associated s.gment. (1) We will
further assume that the computing utility suprorts the necessary
principal authentication and access autnorization mechanisms for
maintaining the contents of access control lists. We require
that at some point in referencing any segment, its associated

access control list be used to med ‘e that reference.

(1) We assume that the reader is familiar with such computer

science concepts as access, capabilities, domains, processes, and
principals [S4, F1].

-17~




2412 Global Machine Oriented Names

We will name a segment and its access control list by a
name that is unique within the system. This name, which we will
call a wunique identifier (UID), will ve compact, fixed length,
and of high information density. The unique identifier naming a
segment and 1its access control list will be assigned when the
3egment is created and may never be changed. Once assigned, a
unique 1identifier will be valid for all time. If we allowed a
unique identifier to be reused after the segment it names is
destroyed, then that identifier would not uniquely identify a
segment. It would be difficult, if not impossible, for a process
to distinguish between different segments, existing at mutually

exclusive points in time, named by th: same unique idenrtifier.

(1)

It should be noted that we have purposely excluded the
possibility of having more than one unique identifier bound to
the same ooject. The reason for this is the need to determine if
two segments are identical. If we guarantee that no two unique
icentifiers are ©bound to the same objocct, then we can decide if
two segments are identical by compa:'ing their unique identifiers.
Lacking this guarantee, it is not clear how a process could

decide if two segments were the same segment. (2)

(1) A discussion of the need for computing systems to support
unique identifier name spaces may be found in Fabry [F1].

(2) By equal we mean the lisp concept of eq [M4].
~18-




Due to their compact size, unique identifiers are well
suited to efficient implementation and manipulation by computing
hardware. We wiil assume, for the moment, that access control
will operate during the translation of unique identifier to
object. Cercainly this requires that the name spaces that
associate wunique identifiers with objects and their associated
access control lists be protected. Otherwise a process could
circumvent the access control mechanisms of the system by causing
the unique identirier associated with any segment to name an
arbitrary access control list or equivalently, causing the unique
identifier associated with any access control 1list to name an
arbitrary segment. It is therefore necessary that the security
kernel exercise complete control over the unique identifier to
access control list and unique identifier to segment name spaces.
Since the security kernel must force these two name spaces to
correspond, we will treat them as a single entity. Figure 2-1
illustrates this protected binding mapping unique identifiers

into segments and their access control lists.

<UID> +++ <SEG/ACL>

Figure 2-1: Global Machine-Oriented Names

253 Global User QOriented Names

From the point of view of a human user, the unique

identifier name space which we have defined for naming segments

«19=




has four major inherent disadvantages. The first disadvantage is
that humans are poor at dealing with high information density
names. Second, since unique identifiers must be assigned by the
svstem and not the user, they can have no mnemonic significance.
Third, the binding or meaning of a unique identifier cannot be
changed. I'he final disadvantage 1in the usage of unique
identifiers by humans is that it is often convenient to allow
multiple names in a name space to denote the same object. 1In our
model we have precluded the possibility of having two wunique

identifiers name the same segment.

For these reasons, any via e computing utility must
support a user-oriented name space. Ideally this name space
should bind arbitrary length, user-supplied character string
names to vnique identifiers. 1In practice, some upper bound is
often placed upon the size of user-supplied names. 1In any
reasonable computing utility this restriction must not force
users to wuse difficult-to-remember non-mnemonic names. To
promote and encourage information shuaring, this name space
should be sharable by all processes in the computing utility. 1If
this were not the case, then one user who wished tv share a
segmer.t with another user would have to communicate the unique
identifier of that segment ¢to the other user. A shared
user-oriented name space eases this communication problem by
aliowing users to identify segments in interpersonal

communication by human-oriented namcs.

«20=




A well known weakness of such a <simple, unstructured,
global name space, which results from tre need for a name space
to define a function, is that two users may notL name different
segments by the same name. If One wuser names a segment
"square_root_program", then no other user may use this name for
another segment. Perhaps the most severe manifestation of this
problem is that a user may not choose a name for a segment

without knowledge of every name in the global name space.

Another consequence of the global scope of the name
space we are defining 1is that it provides a path of user
interaction. One wuser might intentionally modify a name to
unique identifier binding that another user was depenaing upon.
This constitutes an uncontrolled malicious user interaction since
it allows one process to cause another process to reference the
wrong segment. This in turn may cause an unsuspecting process to
fail or compromise the integrity or security of sensitive
information to which it has access. It is therefore apparent
that the ability ic change a global user-oriented name space must

be regulated by the security kernel.

One simple authorization scheme a computing utility
could adopt for its global user-oriented name space is to allow
only the principal who created a name binding to modify that

binding. Unfortunately, even such a primitive authorization

mechanism is an unwieldy extension to the unstructured name space

we have defined. Such an extension would require that every name

2=




binding in the nzme space have an associated principal name unsed
to authorize modifications of that name binding. 1If the name
Space were structured into meaningful collections of name
bindings, then a more natural authoriza’.ion scheme based on
controlling a process' ability to modify any of a related

collection of name bindings could be employed.

Hierarchical name Spaces, such as the user-oriented
name spaces found in the Mvlties [B1, 01] and UNIX [(R2]
time-sharing systems, provide a powerful and natural solution to
both the naming conflict and authorization osroblems outlined
above, Since most name spaces found in contemporary computer
Systems, such as the ubiquitous "two-level"™ file system [M3], may
be described as degenerate fixed-depth hierarchies, our model

will support a hierarchical global user-oriented name space.

Hierarchical name spaces provide their users with a
powerful organizational mechonism. This mechanism encourages
logically related name bindings to be <collescted in a single
directory or directory sub-tree of the hierarchical name space.
For 1instance, each user could place name bindings he creates in
distinct sub-trees of the hierarchy. Naming conflicts within a

given directory are easily avoided by locally restructuring the

hierarchical name space su that the conflicting name bindings

occur in different directories. The directory structure of a

hierarchical name space can also serve as the basis for a simple,




flexible mechanism for controlling the modification of the name
birdings in the hierarchical name space. The ability to use
and/or cnange the name bindings in a directory can be specified
by an access control 1list on that directory. Authorization
control may also be Jelegated by allowing the access control
lists of a directory to spccify which principal may modify the
access control lists of its sub-directories. Figur: 2-2 extends

our model to 1include both human-oriented and machine-oriented

global name spaces.

USER ORIENTED MACHINE ORIENTED
NAMES NAMES

CPATHNAME> +++++++++++++ <UID> ++++ <SEG/ACL>

Figure 2-2: Global User-Oriented Names

2.4 Local Macnine Oriented Names

At this point our model provides two very powerful
mechanisms for naming information. One mechanism allows any
segment in a computing wutility to be denoted by a compact,
fixed-length, unique identifier. The other asaming mechanism
allows segments to be named by arbitrary length character string
names indicating the position of a segment ir. a naming hierarchy.
In common to both of these mechanisms is the fact that their

scope is global; they are shared by all users of the computineg

utility.

ety > %



An obvious implication of the scope of a unique
identifier is that it must be capable of representing as many
distinct segments as the computing wutility could create
throughout its entire life. Because the set of segments existing
at any one time will be a small subset of all segments that have
ever existed or will ever exist, our unique identifier name space
will be sparsely populated. For large systems with 1long
lifetimes, this unique identifier name space will also be quite
large. Economics demand that such large, sparse mappings be
stored in a compact form requiring more sophisticated accessing
methods than indexing by unique identifier value. This need for
sophisticated retrieval methods in conjunction with the large
potential size of the unique identifier %o segmernt mapping tables
suggests that this name space is difficult to implement
efficiently. As a result, contemporary computing hardware
provides a name space for addressing segments that is much
smaller and denser than the global unique identifier name space.
The increased efficiency of representation and mapping of this
name space is achieved by restricting the scope of the

machine-oriented segment identifiers.

The 1local machine-oriented name space in our model is

patterned after the Multics gsegment number name space. Like

unique identifiers, segment numbers are compact, fixed-length,

machine-oriented names. Unlike unique identifiers, relatively

few segment numbers are supported (1) and segment numbers are




locally dense so that simple, efficient hardware translation
techniques can be used. Since segments will be identified to the
base level of the computing utility by segment number, we will

call a segment number name Space an address space.

There are many possible choices for the scope of
segment numbers. A cooperating collection of processes could
share a common segment number address space. Segment numbers
could be private to a process, shared by all domains in that
process. Conversely, the scope of a segment number could be 3
domain. It is even possible to imagine a system in which the
Scope of a segment number is temporally restricted. The choice
of which of these or other possible schemes for limiting the
scope of segment numbers is appropriate for a given computing
utility depends upon both the hardware on which it must run and
the desired patterns of interaction within the computing utility,
The larger we allow the Scope of a name space to be, the greater
the cost of translating names in that name space. Conversely,
the smaller we make the scope of a name space, the fewer the

naming needs it can satisfy.

3

nr we desire inter-domain communication to be
efficient, then it would be inappropriate to restrict the scope

of segment numbers to a domain. Were this done, segments could

(1) Multics supports a local, machine-oriented name space of
about four thousand segment numbers.

-25-




only be named in inter-domain communication by unique identifier
or, worse still, pathname. Since these names are not directly
usable by the base level hardware of the computing utility, they
would have to be mapped by the receiving domain into its segment
number address space before the segment naned could be
referenced. By similar reasoning, if inter~process communication
occurs with high frequency in a particular computing utility then
that computing utility might choose to share a segment number

address space among a group of cooperating processes.

The choice of the scope of segment numbers represents
an engineering trade-o.f. We must limit the scope of segment
numbers so that they may be efficiently implemented in hardware.
Additionally, the smaller the scope of a- segment number the less
its need to be protected. If an address space is 1local to a
protection domain, then it may be freely manipulated by that
domain without compromising security. In opposition to ‘the
efficiency considerations that weigh 1in favor of reducing the
scope of segment numbers is the desire to make the scope of a
segment number as large as possible so as to make communication
between different computer systems, processes, domains, and
moments in time as efficient as possible. The desired

characteristics and resources available to each computing utility

must be carefully evaluated to determine the largest group of

interacting objects that can share an address space without

making the address space unacceptably large.




Routine communication between the_ security kel nel
domain and other protection domains in a computing utility should
probably, ror performance and modular programming reasons, be
performed by using segment numbers to denote segments. This
requires that the ability to manipulate the seguent number name
space we have just defined be controlled by the security kernel.
This need for the security kernel to control the manipulation of
an address space would not arise if addi'ess spaces did not span
protection domains. The reader should take note of the fact that
since segment numbers do not have global scope, our global
user-oriented name space cannot be implemented by binding names
to segment numbers. Figure 2-3 extends our model to include the
protected binding of segment numbers to segments and their access
control lists. We also include a protected binding between
segment numbers and unique identifiers. This binding allows the

identity of a segment named by a segment number to be

established.

USER ORIENTED MACHINE ORIENTED
NAMES NAMES

PER-SYSTEM CPATHNAME> ++++++++++ <UID> +++ <SEG/ACL>
+ +
+

+
PER-ADDRESS SPACE <SEGNO>

Figure 2-3: Local Machine-Oriented Names




2.5 Local Descriptors

Economics require that we refine the segment number to
access control list and segment translations depicted by our
model. These translations must be performed upon every ~eference
to a segment. It is thus essential that they be efficiently
implemented. In light of current computing technology, these
translations must be performed 1in hardware if we desire our

computing utility to be economically feasible,

Contemporary computing hardware supports neither the
ability to address arbitrary amounts of storage nor the ability
to perform the necessary access control list .~earch upon every
reference to a segment. To solve these probloms one frequently
finds two high-speed, hardware look-aside memories aidiag the
processors that implement a computing utility. One associative
memory maps a segment number and domain identifier into a
hardware interpretable representation of the domain's access to
the segment specified by that segment number. We will call the
entries in this associative memory protection descriptors (PDS).

The other associative memory maps a segment number into an

addressing descriptor (ADS) that allows the hardware to address

the representation of a segment.

The processors we have described look up the address of

a segment in their addressing descriptor associative memory and

=28=




validate their authority to reference the segment with respect to
the appropriate protection descriptor found in their protection
descriptor associative memory. When one of these descriptors is
not found in its associative memory, a hardware fault will be
recognized. At this point software may intervene and take the

appropriate steps to load the necessary descriptors and restart

the faulted program.

Clearly the security kernel must control the
manipulation of the protection descriptor and addressing
descriptor name spaces. This is necessary since there exists a
one-to-one correspondence between addressing descriptors and
protection descriptors which must be maintained to preserve the
integrity of the system's access control mechanisms. Figure 2-4
refines our previous model by supplanting the protected segment
number to segment and access control list mapping by the four

protected mappings described above.

USER ORIENTED MACHINE ORIENTED

NAMES NAMES
PER-SYSTEM C{PATHNAME> +4++++ <UID> +++++++ <SEG/ACL.
+ + +
+ + +
PER-ADDRESS SPACE <SEGNO> + <ADS> + +
+ +
+ +
PER-DOMAIN CPDS> +44+++++4+444+44++

Figure 2-4: Local Descriptors

F



2.6 Local User Oriented Names

We have seen that efficiency considerations require our

model to support a limited-scope, machine-oriented name space.

It is only natural to consider whether there would be any
advantages in our model also supporting a user-orientecd name

space of limited scope. The answer is, quite emphatically, vyes.

Like the segment number name space we have defined, a
user-oriented name space of 1local scope would be easier and
faster to search than 1its global counterpart. But more
important, it would provide a private name space that could be
manipulated arbitrarily without worrying about interactions with
processes outside of the scope of the name space. This 1latter

ability is necessa,y in providing modular programming facilities.

It 4is cleer that a program should not code into itself
the unique identifier or even the pathname of another progranm,
such as a square root program, that it wishes to call. This
prematu e binding between moduies would require that the first
program be changed and recompiled if a new and better square root
program was added to the computing utility. The caller of a
square root program does not, in general, wish to be bound to a
particular square root program. If the choice of which routine a
procedure 1is to call can be delayed until the call is made, then

we gain much flexibility.




We call a name that one program uses to refer to
another program a reference name [01] if its meaning is only
defined in relation to a 1local name space. Such a 1local
user-oriented name space is called a reference name space. One
way to implement a2 space of reference names is to maintain a list
of reference name to segment associations (o01]. Another
mechanism for realizing a reference name space, found in many
contemporary computer systems [J1, I1], involves searching an
ordered 1list of specified directories, called search rules, to
resolve inter-program references. Reference names provide a very
useful mechanism for combining separately conceived subsystems
and testing new subsystems all of whose components have yet to be
written by allowing reference name to segment binding to be
defered until the components of a subsystem are combined for

execution.

In our model, each domain will have a private reference
name space. This minimizes the problem of naming conflicts and
allows each protection domain to operate without regard to the

reference names used in other domains. A further advantage of

per-domain reference names is that they need not be explicitly

protected ~»r controlled by the security kernel. Since reference
names are private to a protection domain, each domain may freely
manipulate its own reference name space. All that is required is
that the reference names of each protection domain be stored in a
segment accessible to only that protection dorain. If reference

names spanned protection domains, it would be necessary for a

-31-




security kernel mechanism to control the manipulation of
reference names to prevent one domain from exerting uncontrolled
influence over another domain through the manipulation of
reference names. Figure 2-5 shows the relationship of the
unprotected reference name space to the other name sSpaces

described sc “ar.

USER ORIENTED MACHINE ORIENTED

NAMES NAMES
PER-SYSTEM CPATHNAME> +++4++ <UID> +++++++ <SEG/ACL>
+ + +
+ + +
PE.'-ADDRESS SPACE <SEGNO> + <ADS> + +
+ +
o + +
PER~-DOMAIN <{IEFERENCE NAME> .. ++ SPDSY> 4444+44++

Figure 2-5: Local User-Oriented Names

a1 ummar

In this chapter we have investigated the basic roles
played by name spaces in a typical computing utility. Of the
eight name spaces we have described, . only  thé per-domain
reference name space may be excluded from the security kernel
without jeopardizing the ability of the computing wutility to
control wuser interactions. The critical difference between the
reference name space, which can be uncontrolled, and the other

seven name spaces we have considered, which must be controlled,

a2




is that the reference name Space 1is not common to mu.tiple

protection environments. Since it cannot be used by one
protection domain to exert influence over another protection

domain, it need not be implemented in the security kernel,




Chapter III

A Model orf the Multics System

Before approaching the specific problem of defining a
security kernel for the Multics system that does not support
unnecessary name space management mechanisms, we will present a
detailed model of the Multics system and show its correspondence
with cur general computing wutility model. Our Multics model
contains four components: a storage system model, an information
protection model, an address space model, and a reference name
model. These models will contain sufficient detail to allow the
reader who i3 unfamiliar with the implementation of Multics to

comprehend the important :tails of the design we will present.

el torage tem Model

The Multics storage system (1) manages two distinctlr
different types of objects called segments and directories.
These objects are organized into a single system-wide tree
structure that 1is known as the storage system hierarchy. This
hierarchy implements the system's human-oriented global name
space. The 1internal nodes of this hierarchy are directory

objects. Each directory object is itself composed of a named

(1) A more complete description of the Multics storage system
than will be presented in this section may be found in Organick
(01) and Bensoussan [B1].

-34=




collection of entries, one for each immediately inferior segment
or directory in the hierarchy and one for each 1link in the
directory. Links are psuedo-objects in the hierarchy that allow
an object to appear to reside at several disti.ct nodes in the
hierarchy. To accomplish this, t.ae directory entry of a link
contains the pathname of another object or link in the hierarchy
that 1is to be considered as the target object of the link. The
directory ent-"y of a segment or directory object contains many
important attributes of the object. Among these attributes are:
a system-wide unique identifier, a collection of human-readable
names for the object that are unique within the directory, an
access control list, and a file map for the object that allows

the system to access the object.

Each directory in the Multics hierarchy is stored in a
separate segment. Many advantages accrue from supporting a
hierarchical name space whose directories are implemented in
separate segments. These advantages are closely interrelated.
First, since each directory contains only a small fraction of the
total name bindings represented by the hierarchy, it may be
searched much more quickly than a corresponding single segment

implementation of the wh»yle hierarchy. Finding a name in a

hierarchically organized name space requires searching only those

directories defined by the prefixes of the name. In general,
this will represent a substantial savings in search time.

Second, the component names in a directory may be viewed as




uniform, wunstructured names. Finally, the names in a directory

can be relatively small and yet still be unique.

As we have mentioned, a practical computing «tility
cannot assume that all users will be benevolent with respect to
their manipulation of a global, shared name space. We must
assume that some user, through malice or accident, will attempt
to delete or modify name bindings that other users are depending
upon. If this global name space is to be useful, then users must
be able to control or at 1least know who may change the namo
bindings that are of interest to them. Controlling who may read
the name bindings in a particular directory of a shared name
syace is also desirable since the names in a directory might

vhemselves constitute sensitive information.

Since segments are the basic unit of access control in
Multics, it is only natural to control the manipulation of the
names in a directory by the Multics segment access control
mechanisms. This approach is quite attractive since it allows
the name bindings in a name space to be protected without
introducing any new, special purpose access control mechanisms.
The access control list of a directory specifies which principals
may read and write its representation. In this way, the normal
access control and authorization mechanisms o, Multics
automatically provide a certain degree of control over the

manipulation of names in its hierarchical name space. Multics

=36




actually provides finer access ¢ .atrol on directories than is

afforded by its hardware enforced access control mechanism by

encapsulating directories and a set of system-supplied procedures
which manipulate directories in a protected subsystem [S1]. The
procedures in this protected subsystem, which must be a part of
the security kernel, exercise control over the use and

manipulation of the name bindings in a directory.

If we assume that the root directory of the hierarchy
is  ite own parenit, then every object in the Multics storage
system has a unigue parent directory. Furthermore, since the
hierarchy has the structure of a tree and names of directory
entries are unique within that direztory, we can specify an
arbitrary object in the hierarchy by an ordered list of entry
names. Such a specification is called a pathname. The first
component of a pathname names an entry within the root directory,
and each additional name specifies an entry within the directory
specified by the list of names that preceeded it. By convention
we take the name of the root to be the null name, and we write

the pathname a, b, ... g as >a>b>...>q.

A leaf node of the Multics hierarchy can be either an
empty directory, a 1link, or a segment. Segment objects, which
are implemented directly by the Multics hardware, are primitive

objects in which programs and data are stored.




In our general computing wutility model a dir :ctory
entry consists of one name to unique identifier mapping stored in
a directory of the user-oriented hierarchical name space. The
issue of where to store the access control 1list and other
attributes of a segment or directory, which was not addressed by
our general model, was resolved in Multics by merging this
information with the entries of its hierarchical name space.
This scheme has three important consequences. First, because a

directory entry contains the attributes of the segment it names,

no two directory entries in the hierarchy are allowed to describe

the same segment. (1) This requires that an entry contain all
synonyms of the object it describes. In our general computing
utvility model this was not necessary since there was no penality
associated with allowing multiple entries (single name to unique

identifier mappings) to denote the same object.

Second, the unique identifier to segment name space of
our general computing utility model exists in Multics only as a
collection of individual mappings scattered throughout all
directory segments in the hierarchy. This renders the task of
locating a segment given its unique identifier prohibitively
expensive. However, Multics does wuse unique identifiers to
facilitate the determination of whether two objects denoted by

different pathnames are in fact the same object.

(1) If this rule were not obeyed, then the system would be faced
with the error-prone task of maintaining identical, but separate,
copies of the attributes of a segment.

-38-




Third, because the access control list of an object is
stored in the object's superior directory, it is not possible to
have the access control list on that object arbitrate access to
the object independent of the access control 1l <ts on the
object’s superior directories. To see that this is true all we
need do 1is consider the following scenario of a process
attempting to reference a segmenti. Assume that the access
control 1list of the segment specifies that the process is
authorized to reference the segment, but that the segment’s
directory entry resides in a directory to which the process has
no access. The system is faced with a paradox. 1If it allows the
process to reference the segment, then it must allow the process
to use information 1in the segment's directory entry. But the
process is not authorized to use information in the directory
containing the entry. Thus, if the system permits the process to
reference the segment, then it must violate the authorization
specified in the access control list of the containing directory.
Conversely, if the system does not permit the process to
reference the segment, then it must violate the authorization
specified in the access control 1list of the segment. This

dilemma will be discussed in detail i1 the next chapter.

-39-




3.2 Information Protection Model

The active agent of computation in Multics is a
process. A process may execute instructions in ary of eight
protection domains, numbered from 0 to 7. These domains have the
property that a process' access rights to objects in the storage
system while executing in domain n are a subset of its access
rights while executing in domain n-1. Domains that are so
constrained have been named rings [S2]. To identify the user on
whose behalf a process 1is executing instructions, the system
associates with each process an unforgeable principal name. This
access control name is used to establish a process' rights to

access directories and segments in the storage system hierarchy.

Associated with each segment and directory in the
storage system hierarchy 1is an access control list which, in
conjunction with the access control name and ring of executicn cf
a process, completely determines the access rights of that
process to the object. The access control list in the directory
entry of an object encodes the access mode or rights each
principal is to have to the associated object in a given

protection ring. (1)

(1) In the current Multics implementation both a segment's access
control 1list and its ring brackets must be considered to
determine the access rights of a principal to the segment in a
given ring. Since this level of detail is unimnortant for our
purposes, we will imagine that a segment's access control list
alone is sufficient to determine access.

-40-




When a process attempts to reference a segment or
directory, the system evaluates the process' access modes to the
target object. Conceptually, this involves searching the access
control list of the object. This information is used to validate

the process' right to perform a given operation upon the segment

or directory. 1In the case of evaluating access to segments,

Multics relies wupon the hardware associative memories described

in our general model to make access validation efficient.

For segments the valid access modes are read, write,
and execute. These access modes are enforced directly by the
Multics hardware. The valid access modes for directories are
status - the right to read the attributes of the entries in the
directory; modify - the right to change the attributes of the
entries in the directory; and append - the right to add new
entries to the directory. Directory access modes are

interpretively enforced by the Multics security kernel.

Links, which are not full fledged objects in the
Multics hierarchy, are not given an access control 1list.
Instead, access to read the contents of a link is granted to any

process that has status permission to the 1link’s containing

directory.




The process of a normal user executes in protection
ring four. This allows the process to access only those segments
and directories to which it has non-null access in ring four or
some higher numbered ring. In order to access a storage system
object accessible to the process only in rings numbered 1lower
than four, a user process must enter an appropriate lower ring.
This may be done only by calling a procedure which is designated,
by its access control list, as a gate into that ring. When such
a gate procedure 1is called, the process enters the inner ring.
By virtue of its having entered an inner ring, the access righrts
of the process may increase. When the process returns from the
gate procedure, it reenters its previous ring of execution and
relinquishes the access rights it gained on entry to the lower
ring. To put teeth into this protection mechanism, the storage
system manager will not allow a process to create a gate into a
lower ring than the ring the process is currently executing in.
This 1insures that only procedures authorized to run in an inner

ring may create gates into that ring. (1)

The Multics system takes advantage of this ring
protection mechanism to protect its security kernel programs and
data tases from tampering by non-kernel procedures, This |is
accomplished by setting the access control lists of security

kernel procedures and data bases to indicate that they may be

(1) More complete descriptions of the Multics protection
mechanisms may be found in Saltzer [S3], Schroeder [Ss2], and
Organick [01].

M=




accessed only by processes executirg in protection ring zero.
Entry points in the security Kkernel which are callable - by

non-kernel procedures are declared to be gates into ring zero.

100! Address Space Model

The Multics system associates an address space with

each process [B1]. The function served by this address space is

to provide a mapping from a small set of virtual addresses,

called segment numters, that can be directly translated by the
Multics hardware, onto the much 1larger set of objects in the
Multics hierarchy. This segment number address space corresponds
to the local machine-oriented name space defined in our general
computing utility model. In the Multics system every process has

a potential address space of several thousand segment numbers.

The binding of a segment number to a storage system
object, which incorporates a storage system object into an
address space, is called initiation. The effect of initiating a
storage system object is to make the representation of that
object appear directly addressable by the hardware of the Multics
machine. Since Multics relies wupon addressing and protection
descriptors, such as those described in our computing wutility
model, to implement hardware references to segnents, only a
fraction of the hardware segment number to segment mappings

implied by a process' address space need exist at any given

ak 8=




instance. As in our computing utility model, the Multics
security kernel handles faults caused by attempting to use
missinyg descriptors by reloading the missing addressing or
protection descriptor and restarting the faulted process. The
unbinding of a storage system object from a segment number, which
removes the object from the process' address space, 1is called

termination.

Our discussion may have 1lead the reader to the
conclusion that a process may have several segment numbers bound
to the same storage system object. Actually, this is not
permitted by the address space manager. During the initiation of
an object, the address space manager locates the directory entry
of the object from which it fetches the system-wide unique
identifier of the object. This identifier is looked up in a
per-process table (1) that maps unique identifiers into segment
numbers. If the unique identifier is found in this table, then
the object is already in the address space of the process. This
being the case, the initiation primitive returns an indication to
this effect as well as the segment number that is bound to the
object. This scheme has several advantages. First, it helps a

process conserve its segment numbers - a very scarce resource.

Second, it permits a process to test the identity of two objects

in its address space by comparing the segment numbers assigned to

(1) See appendix A.




these objects. Finally, it simplifies the management of the

Multics virtual memory.

3.4 Reference Nam?_Space Model

We have asserted that iocal user-oriented name spaces
in a computing utility need not be part of its security kernel,
This claim not withstanding, the Multics supervisor implements a
reference name space for every ring of every process. These name
spaces provide a mechanism for mapping character string names
into segment numbers and vice versa. In the current Multics
implementation only segments may be assigned reference names.
The security kernel itself does not use reference names for
normal segments. It does however misuse its unique ability to
assign reference names to the segments with which it implements
directory objects. (1) Specifically, the Multics supervisor uses
the reference name manager to associate the hierarchy pathnames
of initiated directories with the segment number of che segment
containing the representation of the directory. As we will see
in the next chapter, this presents problems when directory
objects are renamed. This problem will be discussed in great

detail in the ensuing chapters.

The address space manager and reference name mar.ager

share a common data base in the current Multics implementation.

(1) In non-kernel domains directory objects are sealed and may
not be accessed as segment objects.

~45-




=

This combined data base is called the Known Segment Table and 1is
documented in appendix A. The reader who is unfamilar with the
structure and contents of the KST is wurged to review this
material. Additional information on the Multics reference name

manager may be found in Organick [01] and Bensoussan [B1].

“46-




Chapter IV
Design

The Multics designers recognized the advantager of
building a computing utility on top of a central security kernel.
As a consequence, Multics is more fortunate than most e Sitsimg
computer systems as regards its securability. By construction
mos!. modules of the Multics system are not permitted to execute
in protection ring zero. This bulk of code is thus prevented by
the Multics protection mechanisms from tampering with those
programs and data that are only accessible from protection ring
zero. These protected programs constitute the Multics security
kernel. Although the portion of the Multics supervisor that lies
outside of the security kernel dwarfs the security kernel in
comparison, the modules of the Multics security kernel are still
quite numerous as well as complex. The object modules of the'
Multics security kernel presently represent approximately one
hundred and fifty thousand machine instructions. These
instructions implement in excess of two hundred user callable
functions as well as a host of implicit system services such as

demand paging.

de will present a redesign of the current Multics
security kernel that will enhance its certifiability oy reducing
its size and number of external interfaces. As a side effect, we

will also improve the modularity and coding of the area of the

4T




system we will investigate. OQur design will eliminate the need
for the Multics security kernel to support reference name
management. This requires that we carefully redesign and
remodularize ring zero so that it is independent of the reference
name manager. This is necessary since a security kernel aust not
depend upon the correctness of procedures outside of the kernel.
Before getting inte the details of ‘our design, we will
investigate the reason behind ring zero's current dependence on

the reference name manager.

Security Kernel Dependence on Reference Name Management

While there does not appear to be any intrinsic need

for the Multics security kernel to support reference name

management, its removal from ring zero is complicated by the fact

that the Multics address space manager uses the facilities of the
reference name manager to maintain an association between the
pathnames of directories it has initiated in a process and the
segment numbers of these directories. The address space manager
uses these associations to avoid having to repeatedly resolve
identical directory pathnames into segment numbers. Since the
security kernel must not depend upon a mechanism outside the
security kernel, it 1is necessary to decouple the address space
manager from the reference name manager before the latter can be

removed from ring zero,.




The dependence of the address space manager upon the
reference name manager maiifests itself in the recursive
procedure find_ which the address space manager uses to resolve
directory pathnames into directory segment numbers, This
resolution 1is necessary since the hardware base of the system
only implements references to storage system objects by segment
number, When find_ 1is invoked to determine the segment number
for a directory, it calls the reference name manager to map the
pathname it is given, interpreted as a reference name, into a
segment number. 1If the pathname is a reference name known in
ring zero of the process, then -find_ returns the associated
segment nimber as th= segment number of the directory. (1) 1If
che pathname is not a known reference name, then find_ splits the
pathname into a pathname of the parent directory of the target
directory and the directory entry name of the target directory.
It then calls itself recursively to obtain a segment number for
the parent directory. Using this segment number to reference the
parent directory, find_ attempts to initiate the target
directory. If it succeeds, it calls the reference name manager
to bind the pathname of the target directory, as a refcrence

name, to the segment number assigned to the target directory.

(1) As we will see later, this can cause problems since this
segment number may no longer be bound to the directory specified

by following the pathname find_ was given step by step through
the directory hierarchy.

“49-




This thesis suggests a radical change in the ring zer»
address space manager. The essential resu.t of this change is
that find_, as described above, need no longer be called by ring
zero. This allows both find_ and reference name management to be

removed frcm ring zero.

4.2 Source of the Dependence

One of the basic goals of the Multics protection
mechanism is that a process should be wunable to detect the
existence of a storage system object to which it has no access.
(1) A second basic goal of the Multics protection mechanism is
that the access control 1list of an object should be the sole

specifier of accesz to the object. (2)

(1) We will consider that if a process has access to the parent
of an object then it has sufficient access to determine the
existence of the object. The reason for this will be discussed
later.

(2) This goal was not originally embodied in the Multics design.
Originally a process' access to an object was a function of three
different access control lists. The first list was part of the
directory entry of the object and corresponds to the access
control 1list we now have. The second 1list was part of the
object's parent and was common to all entries in the directory.
The last 1list was a one per system master access control list.
The result was a very complex access evaluation mechanism that
allowed an unwary user .o increase a principal's access rights to
an object by removing that principal from crie access control list
when his intention was actually to deny the principal a‘:cess to
the object. The complexity o€ this mechanism so confused users
that many of them Jdid not attempt to use the system provided
protection mechanism. With the current Multics design a wuser

needs only review one 1access control list to determine who has
access to a given segment.

-50~ (Tl




These goals have made the determination of whether a
process should be permitted to initiate an arbitrary directory
quite difficult. This difficulty stems from the fact that the
access control 1list of an object and its physical storage map
reside in its parent. Since we wish the access control 1list of
an object to exercise complete control over access to that
object, we must permit a process to initiate all superiors of
accessible segments independent of access to these superiors.

But this violates our second goal.

Multics attempts to resolve the conflict outlined above
by nol permitting a process running outside of ring zero to
initiate a directory. Since a process cannot read the access
control list of a segment until its parent is known, the system
still must permit processes, while executing in ring zero, to
initiate directories that they may not have the right to know
exist. By causing the initiation of these superior directories
to occur in a single, indivisible ring zero call, the system
could, 1in principle, prevent security leaks. This could be
accomplished by ierminating those intermediate directories that
had to be initiated only to find that the process had no access
to the terminal segment, before returning to the caller.
Unfortunately, Multics system 24.2 does not do so. As a result,
any process can determine the existence of any postulated
directory by attempting to initiate any arbitrarily named

descendent (which need not exist) of that directory and observing

-51-




how many segment numbers were allocated by ring zero. This is

possible because all rings share a common address space.

It would be relatively easy to correct the
implementation flaw in the Multics address space manager pointed
out above, However, the system would still have to be very
careful to avoid compromising information. For example, suppose
a process filled up 1its address space intentionally and then
called ring zero to initiate >secret>x. If ring zero was not
very careful, it might cause the process to die due to its
inability to find an unused segment number to bind to >secret; if
and only if >secret existed. This would allow the existence of

>secret to be inferred by whether or not the process died.

The inability of a process to initiate directorieé in
outer rings directly has led to many needlessly complex
mechanisms for manipulating directories. In addition, it has
forced us always to refer to directories by pathname in the
security kernel interface. Not only is this inefficient, but it
has led to ring zero's dependence upon Tind_: If we could
initiate directories directly outside ring zero, then the ring
zero interface could take a segment number instead of taking a
pathname as a directory specifier. Since ring zero would no
longer need to call find_, it could move out of ring zero, along

with reference name management, without compromising the security

or ring zero.

<Ko=




3.5 Removal of the Dependence

§.3.1 Qverview of the Design

We propose allowing directories to be initiated by
processes executing in all rings. As was noted earlier, the
basic problem tn be solved is that of deciding whether a
process should be allowed to initiate a directory to which it has
no explicit access. (1) There are essentially four schemes for
making this decision. The first scheme involves recognizing that
if the access control 1list of a directory is to completely
express access to that directory, then we must make explicit the
now "hidden" permission to initiate a directory if some
descendent of the directory is accessible to the process. The
obvious way to accomplish this 1is to invent a new directory
access mode called "initiate". This mode would allow the named
principal to initiate a directory and to use the information it
contains that 1is relevent to accessing descendents of that
directory. This makes the decision of whether or not a process
should be allowed to initiate a directory quite simple. If the
process has non-null access to the directory, then it wmay

initiate it. Otherwise, it may not.

(1) The reader should note that we are ignoring, for the purposes
of this thesis, the possibility of solving the problem outlined
above by removing the attributes of a segment from the directory
hierarchy. Removing the attributes of a segment from its parent
directory, which may be the best long term solution, seems very
attractive but requires a fairly extensive overhaul of the
systenmn. This thesis will investigate less drastic solutions to
the directory initiation problem which do not disturb the
structure of the Multics hierarchy.

-53-




This scheme does not meet the goal that the access
control list of an object completely express which processes may
access that obiject. While explicit 1initiate permission is
probably a workable solution, and its simplicity is appealing,
adoption of such a solution would produce a quite noticable
change in the system's functionality. We choose to explore
alternative solutions that maintain the current cystem's

functionality.

A way to maintain the current functionality of Multics
using explicit initiate permission is to <«ouple the access
control list on an object with the access control 1lists on all
superior directories, so that when a process is given access to
an object it is also given 1initiate access to all superior
directories of that object. When a process subsequently is
denied access to an object, the security kernel must remove any
initiate permission that the process had to the superior
directories of the object and that resulted solely from its
having access to the object. Determining which initiate
permissions should be removed is very difficult, potentially

requiring that the entire directory hierarchy be examined.

A second way to decide whether a process may initiate a
directory 1is to 3earch the hierarchy subcree rooted at that

directory. If the process has non-null access to any member of

5N




this subtree then the process should be allowed to initiate the
directory in question. Naturally, this scheme 1is far too

inefficient to consider seriously.

A third method of deciding whether a process may
initiate a directory 1is to require non-null access to the
directory. This scheme has the disadvantage, shared by the first
scheme discussed, of preventing the access control list of a
directory or segment from being the sole arbiter of access to
that directory or segment. 1In order to initiate a segment, a
process would need non-null access to the superiors of that

segment.

We propose a fourth solution to the problem of
initiating directories. Instead of worrying about whether or not
a process has the right to initiate a directory, let us allow all
processes to initiate any directory - whether or not it exists.
The key to this scheme is preventing the process from detecting
any difference between an initiated directory that does not exist
and an 1initiated directory that exists but that the process has

not proven 1its right to know exists. How this is to be done

will be discussed later.

The ring zero address space manager interface resulting
from this approach seems quite natural. Ring zero no longer

concerns 1itself with pathnames. Instead, it accepts directory

segment numbers for directory specifiers. To allow this scheme




to bootstrap itself, we will define the segment number of the
parent of the root to be zero. Initiatiun of segments and
directories will ©be controlled by the procedure initiate_ that
will accept a parameter specifing whether a segment or directory

is to be initiated.

The rationale behind distinguishing directory and
segment initiation is that a process usually has a preconceived
idea about the type of the object it wishes to initiate. When

reality does not support this preconceived idea, the process is

usually in error. Forcing the process to make explicit the type

of object it is expecting allows ring zero to immediately catch
many such errors, preventing a careless process from bumbling
along thinking all is well only to die when it attempts to access
a directory as a segment or vice versa. Naturally, it would be a
security violation for the kernel to report a type violation to a
process that has no right to know whether the directory or
segment named actually exists. If a segment or directory should
be undetectable to a process, then the security kernel must treat
it in a manner consistent with the type specified in the initiate

call regardless of its actual type.

To complete our new ring zero address space manuger
interface we must define a new termination primitive. This
primitive will accept two arguments. The first argument
specifies the segment number to be terminated. The finaol

argument is a status code. It should be noticed that this

=56~




primitive may be called with either a segment or directory

segment number. In the case of terminating a directory, one
constraint 1s enforced. Since the system requires that a known
segment's parent also be known, terminate_ will not terminate a

directory with known inferiors.

4.3.2 Details of the Design

So far everything seems rosy. This scheme seems to
remove many functions from ring zero and to simplify the ring
zero interface in the bargain. Where is the hitch? Do we get all
this for free? The answer is, of course, no. We have glossed
over one important point. In order to decouple directory and
segment 1initiation we must be able to successfully cloak the
physical initiation of directories from a process' detection
until it has established its right to know of the existence of
the directory. As was pointed out earlier, this need for
deception is intrinsic to the hierarchy structure and
functionality of the Multics system. While this design makes the
system's need to deceive the user more obvious, it is not

responsible for the required deceit.

We will call a directory detectable if a process has
established its right to know that the directory exists.
Detectability may be established either by having non-null access
to the directory, by having non-null access to its parent, or by

establishing the detectability of an inferior of the directory.

“BYe




The reason that non-null access on the parent of an object
establishes its detectability is that either status, modify or
append permission to a directory is sufficient to allow a process
to detect 1if a postulated entry in that directory actually
exists. It should be noted that the detectability of a directory

is dependent on the process' history and the ring of execution.

A directory 1is detectable by a process in rings zero
through the highest ring in which it has detectably initiated
some member of the tree rooted at that directory. This highest
detectable ring number of a directory is kept in its KSTE. (1)
We will not attempt to reset this field should a once detectable
directory subsequently become undetectable. Not attempting to
reset the highest detectable ring field in the KSTE of an object
when it becomes undetectable to the process makes sense since the
system has already admitted the existence of the directory to the
process. The process could have stored this information
elsewhere, so it would be of little use to deny the existence of
the directory. The record kept in the KST of the existence of
the directory will naturally vanish when the directory Iis

terminated or when the process is destroyed.’

We must prevent a process from detecting any difference
between an initiated directory that does not exist and an

initiated existing, but undetectable, directory. If a process

(1) See appendices A and B.

-58




could detect a difference in these two cases then it could
establish the existence of any postulated path in the hierarchy.
This would constitute a clear violation of security. To
accomplish this means abandoning the current one-to-one mapping
that exists betweea occupied segment numbers and initiated
segments and directories. Although we will still only allow one
segment number to be bound to a segment, we must allow multiple

segment numbers for the same directory.

The reason for this dichotomy between segments and
directories is simple. Since the access control 1list of a
segment completely controls the right to initiate that segment
there is no need to allow a process to initiate a segment to
which it has no access. This allows us to hide the physical
existence of a segment from a process that has no right to know
of its existence by returning the ambiguous status code "noinfo"
in response to an initiate request. This simple mechanism fails
for directories since we must always allow a process to initiate
an existing directory in case it has access to some inferior of
that directory. This forces us to reiurn more than one segment
number for a directory in some cases in order to prevent the
process from detecting the existence of physically initiated but

logically undetectable directories.

There are two charactc-istics of Multics that
necessitate our abandonment of the current one-to-one mapping

betwe:n directory segment numbers and directories. First,

-59-




directories can have multiple entry names. 1If initiate_ returned
the same segment number for two different entry names within a
given directory, then the process would know that these names
both named the same directory. This coincidence of names would
establish the existence of the directory (if the directory did
not exist, then how could it have two names?). To prevent the
coincidence of multiple names on a directory from revealing the
existence of the directory, we must return a new segment number
if a process reinitiates a directory that is still undetectable
with a new name. In fact, we will even return a new segment
number if it tries to initiate an undetectable directory with the
same name twice. If we returned the same segment number, then in
order for directories that do not physically exist to appear the
same to the user ring, ring zero would have to remember .%“e name
of every phoney directory. This is a neecless complication of

ring zero.

The second characteristic of Multies that forces our
abandonment of the one-to-one mapping between directory segment
nunbers and directories is that the segment numbers of a process
are a finite resource shared among all protection rings of that
process. As we have commented earlier, the finite size of the

Multics shared segment number address space allows one ring to

detect the number of segment numbers being used by all other

rings. This makes it necessary to assign a new segment number

whenever an attempt 1is made to initiate an undetectable




directory. This segment number must not be shared with another
ring so long as the directory remains undetectable. The need for
assigning private, per-ring segment numbers to undetectable

directories may be seen in the argument that follows.

Assume the system returned the same segment number when
asked to initiate a directory in two different rings. Assume
also that the directory is undetectable in the upper of the two
rings. What is the system to do when asked to unbind the segment
number from the directory by the upper ring? It cannot unbind
the segment number and return it to the list of free segment
numbers since a lower ring is using the segment number.
Unfortunately the ring that requested the system to terminate the
segment number can detect whether or not the system actually
returned the segment number to the free list so the system cannot
Just pretend to honor the teri‘ination request. If the segment
number is not freed then the ring can deduce that some other ring
has the directory initiated. By an argument similar to the one
given in the previous paragraph the ring can conclude, from the
coincidence of two rings having the directory initiated, that the
directory actually exists. Since segment numbers are a scarce

resource, the system cannot take the easy out of rot allowing

undetectable directories to be terminated. As a result,

initiate_ must assign a new segment number whenever it initiates

an undetectable directory.




The reader should note that we have ignored, up to now,
the problem of preventing a process from distinguishing between a
non-existent directory and an existent but undetectable directory
throursh observation and analysis of second order effects such as
the time required to initiate or terminate a directory. I't " is
hard to predict in advance of installation in the standard system
what sort of second order effeccs might be observed. The plan is
to investigate this problem following actual installation.
Timing differences can be easily hidden by inserting extra code
in the shorter path. Other differences also probably are

disguisable.

This scheme will merrily allow a process to initiate
vast trees of directories that do not exist. These directories
will be indistinguishable from real undetectable directories.
The potential multiplicity of segmer: numbers for directories
implies that if we compare two directory segment numbers and find
them to be not ecual, then we cannot conclude that the objects to
which they are bound are not one and the same. Since processes
.-unning outside ring zero cannot currently obtain segment numbers
for directories, no user code can be affected by this new
restriction. To allow processes to quickly determine if two
segment numbers are bound to the same object, the sys*em should
support a function for mapping a segment number into the wunique
identifier of the object to which it is bound. Naturally, this

function must return an error if the object is not detectable to

BB




the process. The system must also assure that if a process
attempts to reference through any directory pointer in an outer
ring, it will get the same access violation whether or not the
segment number it referenced corresponded to a real or phoney

directory.

Figure 41 summarizes the actions performed by
initiate_ when mapping a directory into a process' address space.
The reader should note that a target object within a phoney
directory 1is considered a priori undetectable and a non-existent
target object is considerei detectable by a process if the
process has non-null access to the containing directory. The
abbreviation "hdr" used in figure 4-1 stands for the contents of
a KSTE's hizhest detectable ring field. We have omitted the case

where the target is a link as this case will be discussed later.

.target is detectable in ring of caller
.target exists in hierarchy

.target already has a segment number

. return values ' internal state
. . .istatus code!segment number! hd~ '
10 = =} "no_info" | new ' 0 '
i1 0 -} "noentry" | none s - '
iy 004 0 ' new - ring of caller '
1 51 T Rnawa | old imax(hdr,ring of call.r)!

Figure 4-1: Action of Initiate_ for Directories

-63-




Two possible objections we can see to this scheme are
that it can potentially waste segment numbers and it requires
inspecting the parent's access control list. A close examination
of figure U4-1 indicates that there are only two ways to assign
multiple segment numbers to a directory. The first way is to
reinitiate an undetectable directory. The second is to initiate
a phoney directory. Neither of these operations should occur in
normal operation. They could, however, arise in an attempt to
use a misspelled pathname. To control this problem, the outer
ring variant of find_ could terminate those directories that
might be phoney if the terminal segment could not be initiated.
This would prevent a habitual misspeller from cluttering his
address space. It seems that with this addition a process would
be obliged to go out of its way in order to clutter its address
space. If that is what it wants fine. Even if a process wastes
all its segment numbers, it can recover by terminating no longer

needed segment numbers.

The apparent inefficency of inspecting the access
c¢control list of the parent of a directory during its initiation
is not serious since it is normally not required. Only when a
process has null access to an object and has not previously
established detectability for that object 1is it necessary to

inspect the access control list of the parent. (1)

(1) In fact, the frequency with which a process initiates a
directory to which it has has no access is low enough in Multics
that our test implementation does not check to see if a process
has previously established detectability for a directory ¢ avoid

Bl




In Multics system 24.2 the address space manager and
the reference name manager share a data base. (1) The address
space manager takes advantage of its ability to access the
reference name manager's data base by scanning the per ring, per
segment number, 1list of reference names kept by the reference
name manager to determine which rings of a process are still
using a particular segment number. This information is used to
prevent one ring from terminating a segment number that is still
in use by another ring. (2) Only if all rings that initiated the
object have terminated it, can the segment number be unbound from
the objc~t. Thus, we have the concepti of initiating an object in
a particular ring rather than the concept of initiating an object
globally in all rings of a process. This scheme is desirable

since all rings share the address space of segment numbers.

inspecting the access control 1list of the parent of the
directory. If the process has null access to a directory, then

we always check the process' access to the parent of the
directory.

(1) See appendix A.

(2) Since the address space manager uses the presence of
reference names in a given ring for a segment number to detect
that the ring is still using the segment number, the current
initiation primitive must call the reference name manager to give
a segment a reference name in the appropriate ring each time the
segment is initiated. The current initiate interface supplies
the address space manager with a reference for this purpose. A
more complete description of the relationship between the address
Space manager and reference names in system 24.2 may be found in
Organick [01].

-65-




Since reference names will no longer be kept in the
KST, some new mechanism must be invented to supply information
about which rings of a process are still using &z given segment
number. This 1is easily accomplished by adding an eight bit
field, called rings, to each KSTE. If the i th bit( 0 origined)
in this field is on then the corresponding ring has the segment
number initiated. This allows ring zero to detect when a segment
number may be physically terminated, thereby preventing one ring
from terminating a segment or directory that is being used by

another ring. (1)

Our termination primitive marks the segment number it
is given as free in its caller's ring of execution. If the
segment number is initiated in no other rings and its inferior
count is zero, then the segment number is unbound from the object
and its KSTE is placed on a list of free KSTEs. It should be
carefully noted that the termination primitive terminates a
single segment number; it only removes an object from the
process' address space if the last segment number for the object
is terminated. The reader should notice that because initiate_
always assigns a private segment number when a directory is
undetectably initiated, terminate_ need not worry about revealing

the existence of an undetectable directory.

(1) Appendix B summarizes the content of the known segment table
as we have redefined it.

A6




4.y Removal of Pathname Processing

Ring zero's ability to resolve a pathname into a
Segment number has been severely impaired by our design. This
ability, which was embodied in the ring zero procedure find_,
depended upon ring =zero's ability to call the reference name
manager. Specifically, find_ depended on the reference name
manager to maintain an association between pathnames of objects
and the segment number bound to the object. Fortunately, this
association was only used to make find_ more efficient. As a
result, we could redefine find_ in such a manner that it would
still operate correctly but would not take advantage of such an

association between pathnames and segment numbers.

To make find_ independent of the reference name
manager, all we would need to do is redefine find_ to inspect the
pathname it was given to see if it specified the rooitl, “iisens WM
If it did, ¢then find_ would initiate the root, and return its
segment number. (1) Otherwise find_ would strip off the last
component of the pathname and call itself recursively with the
pathname cf the parent of the target object to get its segment
number. Given this segment number, find_ would call initiate to

inictiate the entry named by the component which was previously

(1) The system treats the root directory as a special case. The
location of its physical object map as well as the rest of the
information that would reside in its directory entry, if it had a
parent, 1s embedded in the programs of the system, This
guarantees that the root may always be initiated.

2T




removed from the pathname. For example, if find_ were called
with >adb it would call itself recursively to get a segment
number for >a. It would then call initiate to get a segment

number for the object named b in the directory >a.

While the procedure we have described is ceorrect; 4it
appears to be quite inefficient. This inefficiency suggests that
we should either give find_ a new associative memory or move it
out of ring zero so that it can once again use the reference name
manager. Since giving find_ a new associative memory would add
code to ring zero which has no protection reason to be in the
security Kkernel, this alternative is untenable. Our approach

will therefore be to remove find_ from ring zero.

The actual remcval of find_ from ring =ereo is, of
itself, trivial. 1In the outer rings it can access the reference
name manager directly once again. It can also access our new
initiation primitive through a standard gate into ring zero. The
problem is that numerous programs in ring zero depend upon find_
to map pathnames 1into segment numbers. Unfortunately, they
cannot be allowed to call our new find_ in the outer ring. To dé
so would jeopardize the security of ring zero. To get ourselves
out of this dilemma, we will have to remove almost all uses of
pathnames from ring Zero. This 1in 1itself represents a
substantial simplification of ring zero. To accomplish this task

we will consider the four major uses of pathnames in ring zero.

-68~




y, 4.1 Parameters to Ring Zero

The first class of pathnames used in ring zero that we
will consider consists of those pathnames that were passed into
ring zero as an argument to a gate procedure. This class
represents the major use of pathnames in ring zero. Fortunately,
it is also the easiest class to remove from ring zero. Since
find_ now resides _n the outer ring, we will make the outer ring
responsible for translating all pathnames that are currently
passed into ring zero into segment numbers. We will then
redefine all ring zero gates that accept pathnames as object

specifiers to accept segment numbers as object specifiers

instead.

Boh .2 Links

The second class of pathnames used in ring zero are the
pathnames contained in links. Many ring zero programs, when they
discover that the object they are to act wupon is a 1link, are
defined to act instead upon the target of the link. Ar example
of a ring zero function that is defined to follow this rule is

the segment initiation primitive., (1) We propose that primitives

(1) To prevent a process from causing ring zero, which is masked
against interupts, from looping indefinately following a circular
chain of 1links, each program that follows links keeps count of
the number of links it traverses during each irvocation. 1If this
number exceeds a certain system-specified threshold, then the
computation is aborted.

a9 =




which are defined to follow links return a status code indicating
that a 1link has been encountered as well as the contents of the

link itself, upon discovering that their target is a link.

This scheme requires that 1links be readable in the
outer rings which raises the question of what, if any, access
control should be placed on reading links. The approach taken in
Multics system 24.2 is to make links effectively readable by any
process that has non-null access to the terminal target of the
link. This scheme has an inherent security flaw and is therefore
unacceptable. If some process can guess the pathname of an
existing link to whose target the process has access, then it can
prove the existence of the parent directories of that 1link by
initiating the target object through the lir%, To eliminate this
security flaw we could place access control lists on links,
thereby explicitly naming those processes which may read the
link. The complexity of such a mechanism seems unwarranted when
weighed against its benefits. The only access control on the
target object of the link that is guaranteed is specified by the
access control list of that object. Any access control specified
on a link may be avoided by referencing the target object

directly and thus serves only to protect the contents of the link

itself,

The reasons that access to links must be controlled is

that the existence of a 1link implies the existence of its




superior directories and suggests the existence of its target.
We have chosen a simpler mechanism for controlli.g access to
links which, although not as comprehensive as a mechanism that
associates a private access control list with e€asch 1link, meets
both of the needs for protecting links. We consider a link to Le
part of its containing directory, readable only by processes
having status permission on that directory. This scheme has the
virtues of being simple, easy to implement, and plugging the
information hole that uncontrolled access to 1links provides in
system 24.2. While this scheme does make one class of currently

legal uses of links illegal, this restriction does not seem too

jevere,

To illustrate the scheme we have proposed, we will
outline the redesign of 1link processing by the ring zero
initiation primitive. When initiate_ encounters a detectable
link, it will return the link and a status code that informs the
cuter ring procedure that a link was encountered. (1) The outer
ring procedure may then try the rew path specified by the link.
Since this is happening in an outer ring, we need no longer have

a standard interpretation of links. Since link processing will

be done in the user ring, the process may interpret links in any

manner it chooses. Why not let links contain relative pathnames,

offsets, or even arbitrary character strings? A link might even

(1) As we have mentiored earlier, if an undetectable 1link is
encountered while attempting to initiate a directory, the system
must treat that link as an undetectable, phoney directory.

«Thm




specify a file resiiding in another computer system. The
important poi.t is that wnile the kernel may be the keeper of
links, it does not interpret them. Naturally, the restriction on
link depth, which was intended to keep ring zero from getting

into trouble, vanishes.

h.y.3 Internally Cenerated Fathnames

In a few cases, ring zero generates and uses pathnames
internally. These gene-ated pathnames constitute the third
general class of uses of pathnames in ring zero. We will further
partition this class into those pathnames that are generated only
during system in:*ialization and those pathnames that are

generated during normal system operation.

During the 1initialization of the Multics system, the
need arises to initiate on the order of one hundred or fewer
segments., The reason the system must initiate thes. segments is
of little interest to our thesis. We observe that since system
initialization 1is an infrequent cperation (hopefully once a day
or less) and the number of pathnames to be resolved is quite
small, we need not feel remorse at proposing a very inefficient
mechanism to resolve these pathnames. In fact, as the reader has
undoubtedly guessed, we propose that these pathnames be resolved
by cal 3 to the inefficient version of find_ that we described

earlier.

a2




- - —— " e

In the case of pathnames generated by ring zero during
normal system operation, we cannot be quite so cavalier. Or can
we? In fact, we can. A careful examination of ring zero reveals

that ten is a reasonable upper bound on the number of generated

pathnames that must be resolved in ring zero in the life of any

given process.

In fact, these internally generated pathnames are so
restricted that we have no need to even call our inefficient
find_. Since they all are of tree depth at most three and ali
components of these pathnames except possibly the last component
are constant for all time, we could expand the code of rind . in
line in the programs that use these rathnames. For example, if a
prcgram needed to initiate >pdd>my, then it would first initiate
the root. Then, given the segment number of the root, it would

initiate pdd. Finally, given the segment number of pdd, it would

initiate my.

by, 4 Error Conditions

The last and perhaps most troublesome class of
pathnames used in ring zero are pathnames that are used to report
error conditions. There exist numercus instances in the system
where a procedure detects an inconsistency or error condition
associated with sone segment or directory. For instance, the
system may detect an unrecoverable error while reading the

contents of a segment. Another example would be the detection

miw



that the doubly threaded 1list which chains the entries in a
directory together is misthreaded. In error conditions such as
these, the system writes a message into the system log explaining
the problem. This message often contains a pathname that was
generated f~om the virtual address of the segment or Adirectoryv in
which the error occured. While the exact algorithm ¥ or
generating a pathname from a virtual address is of little
interest to us, this algorithm did depend upon the reference name
manager's ability to map a directory segment number into a

pathname of the object it was bound to.

Since we have argued that ring zero must not call the

outer ring name space manager, we must propose a new algorithm
for mapping a segment number into a pathname. Many schemes are
possible. However, since the error conditions we are talking
about may be presumed to be quite rare, we will suggest a very
simple, buv inefficient, algorithm. This algorithm relies on the
fact that any virtual address may be mapped, by “he known segment
table, into the virtual address of its directory entry. A name
for the segment can be found in the directory entry. This name
is the last component name in a valid pathname of the object. To
get the other components of a pathname of the object, we
recursively apply this technique o0 the virtual address of the

directory entry which is, of course, within the parent directory.




4.5 Summary of the Design

This chapter has presented a design that allows
directories to be initiated in all rings. As a consequence, the
need for the Multics security kernel to maintain reference names
has been eliminated. The key feature of this design is that the
security kernel maintains, for each process, the illusion that
any postulated directory exists unless the process has sufficient
access to prove otherwise. This permits the security kernel to
allow a process to initiate a directory to which it has no access
without disclosing the existence of that directory. The address
Space manager interface presented in this design is summarized in

appendix C. Appendix D contains an example of the use of this

in.erface.

-75=-




Chapter V

New Non-kernel Functions

As a result of our design, the interface to ring zero
has been modified quite extensively. We have eliminated three
major functions that were supported by the old ring zero:
reference name management, pathnawe resolution, and storage
system link indirection. If the non-kernel portion of the
Multics supervisor is to use these services or provide them to
the users of the system, then we must design modules capable of
providing these services that run outside of ring zero. We have
already explained, to a degree which we hope is sufficient to
convince the reader, how the 1last function may be trivially
performed by outer ring modules. In this chapter we will discuss
the important issues involved in resolving pathnames in the outer
ring and designing an cuter ring reference name manager-. In

addition, we will address ourselves briefly to the problem faced

by wuser programs that depend upon now obsolete ring zero

interfaces.

5.1 Reference Name Marager Design

We have seen that the Multics reference name manager
provides four primitive functions on name spaces. These
functions provide a process with the ability to: bind a name to

a segment number, unbind a name, determine the segment number

N

—




that a name is bound to, ani obtain a list of the names bound to
a s:gment number. Actually, vhe Multics reference name manager
provides a larger set of fuuctions. However, the additional
functions all can all be expressed in terms of the four

primitives we have described.

It 1is not our intention to actually design a reference
name manager. We trust that the reader will accept our assurance
that it can be done and that it is in fact straightforward. We
must, however, commeut on one consideration that the design of an
outer ring reference name manager must recognize. When the name
Space manager resided in ring zero it was operating in an
environment ir which it was guaranteed to rur to completion once

invoked. An outer ring name space manager is not afforded this

luxury.

Executing in the outer ring environment, the reference
name manager may be stopped at any 1instant, This of 1little
consequence except when it is stopped by the Multics "jquit"
mechanism. In this case, the system suspends the process'
current computation and then restarts the process. The process
may then reinvoke the reference name marager and at a later time
resume the suspended computation having potentially totally

rearranged the reference name manager's data base.

= 7T=




Luckily the system provides a mechanism that allows a

process to inhibit or "mask" quit signals. By masking quits on

entrance to the reference name manager and unmasking quits upon

exit the problem can be eliminated. Actually, it is highly

unlikely that the entire computation performed by the reference

name manager need be masked. We should aesign the reference name

manager so that it has as small a "critical" section or sections

as poussible. In other words, we should try to isolate the code
that might malfunction if it were not masked against quits We
can then mask and unmask quits only when we enter and exit a

critical section.

Before 1leaving the topic of name space management, we
should comment on one consequence of allowing processes tc
initiate directories directly. This ability allows a process to
use the reference name manager to bind an arbitrary name to a
directory. One 1immediately obvious use of this new facility is
to replace the cur-ent special purpose mechanism that identifies
a process' per ring working directory and search direct-iies
[01]. All we need to do is bind the appropriate name, 1i.e.

"working_dir" or "search_dir_n" to the correct directory segmert

number.




5.2 Pathname Resolution

We have commented that reference names are per riag.
This prevents programs executing in one ring from causing
programs executing in another ring to malfunction by tamperin_
with shared reference names. As a result, ring four could bind
the name "sqrt" to one procedure and ring one could bind the same
name to an entirely different procedure. While this multiplicity
of name spaces per process 1is desirable for protection and
modular programming reasons, it partially defeats find_'s purpcse
in using the reference name manager to bind pathnames to segment
numbers. Since each ring has a different name space, associating

the pathname >a>b with segmect number 401 in one ring will not

help another ring resolve >a>p. The rasult is that many

redundant pathname resolutions will occur and many name =spaces

will contain identical entries.

We suggest that find_ not use the reference nare
manager to associate pathnames with segment numbers. 1In fact, it
was never correct for it to have done so. A name space ju‘t
associates an arbitrary name with a segment number. However,
pathnam:s are not just arbitrary names. Consider, for instance,
what happens when we remove the name b from the directory >adb
and then add the name b to *he directory »>adc. The' resulit of
this change in the environment is external to the reference nane

manager and yet it has invaiidated a mapping the reference nrame




manager was keeping. The pathname >a>b no longer refers to the
object that is bound to segment number 401, but the reference

name manager has no way of knowing chis.

There are potential aavantages to binding pathnames tc
directories once per process, as is done in Multics system 24,2,
Consider the problem of 1installing a new version of 3
multi-component sucsystem, such as the Multics PL/I compiler,
while Multics is running. In Multics system 24.2 we could store
the components of the compiler in a single directory. To install
a new version of the compiler all wec would need to do is build
the new version in a brother directory of the current compiler.
When the new compiler is ready for installation all that would be
necessary is to exchange the names on the new and old compiler
directories. Processes that had already started to use the
compiler would remember the segment number of the old directory
as the compiler directory and would continue to use the old
compiler and satisfy new dynamic linkage frults to components of
the compiler from the old directory. In this way a process
always gets a consistent copy of the compiler. A process that
had not yet used the compiler would initiate the directory
containing the new compiler when it a tempted to invoke the
compiler. It would then remember this new directory as the

compiler directory and satisly all linkage faults for pieces of

the compiler from this directory.




If a process does not "freeze" a directory sub-tree, as
is done in system 24.2, when it initiztes that directory, then it
becomes very difficult to do on line installations of
multi-component subsystems, A process could easily get half of
an old multi-component subsystem and half of a new version of
that subsystem when an online installation of the subsystem is
done. On the other hand, a process often wants to use the actual
hierarchy, not a "frozen" image of the hierarchy. Our design
allows a process to choose between these two alternatives by

supplyiing an appropriate version of find_ in the outer ring.

We suggest that the syster supplied find_ opt for
solving the "directory renaming problem" rather than the "online
installaﬁion problem". The easiest and most attractive approach
to solving the directory renaming problem is to not allow find_
Lo use a pathname, segment number associative memory. Instead,
find_ will always recurse to the root when resolving a pathname.
While this might seem unattractive for efficiency reasons, direct
measurement of the impact of such a scheme upon system
performance reveals that system tnroughput would only be degraded
by a small fraction of a percent. 1In addition, our proposed
address space manager will drastically reduce the number c¢f
pathname resolutions that occur within the system. This
reduction in pathname resolutions should render the difflerence
between find_'s having and not having a pathname associative

memory almost immeasurable. This slight performance degradation

-



seems & osmall price to pay for the elimination of the directory

renaming problem outlined above.
B3 ompatibi

The final topic we wish to discuss in this chapter is
that of compatibility. A basic responsibility of any computinsz
utility is to minimize the effect of internal changes upon its
user community. If a major change must be made in the interfaces
between user written programs and the system, or in the semantics
of these 1interfaces, then the system must support both the new
and old interfaces for a sufficiently 1long period of time to
allow users to convert their programs to use the new interfaces.
A suitable measure of this period of time would probably be

measured in months or even years, not hours, days, or weeks.

We have made substantial changes to the ring zero
interface and thus must address the compatibility issue.
Fortunately, it is quite simple to preserve compatibility without
keeping the old find_ and name and address spsce managers. This
is possible for two reasons. First, we can sinulate the old rine
zero interface by interposing a ring four procedure between the
caller of an obsolete ring zero interface and our new ring zero
interface. Second, it is possible to interpose suck simulation
procedures between the user and the new ring zero interfaces

without recoding or even recompiling any user programs.

-l 2=




Consider how we would simulzte the old interface to
initiate. The outer ring interposing procedu:re would call the
outer ring reference name manager to map the pathname directory
specifier of the old interface into the segment number required
by the new interface. It would then call the new initiation
primitive, If this returned a link, the outer ring interposing

orocedure would start over again.

This simulation procedure would be difficult to
implement if it were not for the fact that Multics now has an
interposing procedure on all calls to ring zero. This procedure
is a ring four transfer vector that normally transfers the call
to the appropriate ring zero gate. (1) This transfer vector can
be modified so as to call an appropriate interposing interface

simulation procedure for the interfaces we have changed.

(1) This transfer vector, which was discussed in a previous

masters thesis by Janson [J1] has nnot yet been installed in the
current Multics system.

=8 35




Chapter VI
Implementation

We have coded a test implementation of the essential
features of our design. This test implementation, which is based
on Multics system 24.2, was undertaken for four major reasons.
First, a working implementation of our ideas serves as an
existence proof of the basic claim of our thesis. Second, a
working implementation helps us demonstrate the practicality of
our design. Third, the actual task of implementing our design
helps insure that we have not neglected any important details in
our design. Finally, a test implementation of our design helps

us to quantify the impact of our design upon the system.

6.1 Plan

We have indicated that our new design requires an
extensive overhaul of ring zero. The pervasiveness of the
modifications necessary to ring zero is largely a result of the
removal of pathnames from ring =zero. While the remova) of
pathnames from ring zero is essential to our design, it is a time

~

consuming, straightforward, ard intellectually unrewarding task.
Inst2ad of undertaking this drudgery, we have devised a

scheme that allows the essential ideas of our design to be

implemented while avoiding most of the uninteresting work. The

-84~




-

implementation we will describe does not affect any code outside
of ring zero, nor does it affect the syntax or semantics of the
interface. to ring zero. As a result of this feature, our test
implementation provides the first step in an orderly transition
from the current Multics system to the system we have described.
The implementation we will describe could be immediately
installed in the standard Multics system without substantially

affecting users.

What we elected to do was to implement our new
initiation, termination, and name space management primitives
inside ring zero. We then reimplementeq, inside ring zero, the
old initiation, termination, and name space management primitives
using our new primitives. This scheme allowed us to concentrate
upon the key ‘ssues of our design without getting bogged down in
the mechanics of converting thirty or more large complex programs

from using pathnames to not using pathnames.

The strength of this approach is that the modules in
ring zero may be slowly weaned away from using pathnames or now
obsolete 1interfaces. Also, by supplying gates to our new
primitives, users of Multics can start converting itheir programs
to take advantage of the new ring zero interface. When ring zero
has been completely converted, all we need do is throw away the
code that impleme'ited the 0ld primitives in terms of the new

primitives and move the reference name manager out of ring zero.

-85-




6.2 mpact on stem Complexit

Reducing the complexity of a system certainly increases
its certifiability [D1, D2, D3, L', N1, P1]. In order to
substantiate the hypothesis that our design results in a system
that is more certifiable than Multics system 24.2, we will 1look
at two measures of the complexity of the security kernels of the
two systems. These measures are the difference in size of the
old ring zero and our new ring zero and the difference in the
number and complexity of gates into the old ring zero and our new

ring zero.

Appendix E summarizes the size comparison data between
the old ring zero and our new ring zero. As it reports, the
address space manager was reduced in size by seventy-seven per
cent. This corresponds to a two and a half per cent reduction in
the size of ring zero. 1In fact, the address space manager that
we designed was so small that we have presented it in appendix H
for the reader to peruse. This sizeable reduction in the size of
the address space manager is quite encouraging and substantiates
our claim that we have produced a more certifiable ring =zero.
What 1is even more encouraging is that while this figure is in
itself substantial, it only represents a partial implementation.
Several modules in ring zero accept both pathnames and segment

numbers as storage system object specifiers. In a complete

implementation of our deslgn many of these modules would only




i,

accept segment numbers. This would allow the code that handled

the pathnames 1in these modules to be thrown out of ring zero,

further decreasing its complexity.

The old ring zero supports about two hundred cates.
Jur design clearly removes the necessity of having gates into
ring zero which call the reference name manager. L also removes
a wnule class of gates that allow an object to be specified by
pathname. Many gates into the old ring zero came in pairs. One
gate would specify the target object by segment number. The
other gate would specify the target object by pathname. With the
ability to initi~te directories in the outer rings, this
multiplicity of gates becomes unnecessary. As a result, only the
gates that take a segment number as object specifier would be
retained in the ring zero of a complete implementation of our
design. When we add up the number of gates thet a full
implementation of our design would remove from the current ring
zerc interface, we find that we would remove about five per cent
of the gates. In addition to recducing the number of gates into
ring zero, we have significantly simplified the interface to over
fifty of the gates that must remain in ring zero. (1) This
reduction in interface complexity also lends credibility to our

claim that we have made ring zero, and hence Multics, more

certifiable.

(1) See appendix G.

-87=




6.3 Impact on System Performance

1o help assess the impact of our design upon the
performance of the Multics system, we developed a small benchmark
that tests the speed and paging behavior of the most used svstern
functions that our design affected. This benchmark was run on
both Multics system 24.2 and our test implementation. The
results of these runs indicated that the virtual cp. time to
initiate and then terminate an object dropped from 11.002
mil%iseconds in the standard system to 10.226 milliseconds in our
test system, a reduction of eight per cent. (1) This is
esp:cially gratifying since the test name space manager we
implemented was not in the least optimized for running speed. 1In
addition, ocur test implementation was unfairly penalized by
having to converse with our benchmark through a simulation of the

old interfaces.

We attribute this speed up to many factors; not the
least of which 1is the fact that we greatly simplified the
structure of the known segment table. We also make the somewhat
immodest «claim that our initiation, termination, and reference
name management primitives were sirply coded better than *iose in
system 24.2. But this is not su'prising; most things are done

better the second time around. It should als> be noted that the

(1) A description of our benchmark as well as a brief summary of
the performance data can be found in appendix F.

-88-

e g T et SRt S5t s




smaller and less complex a module is, the easier it is to program
that module efficiently and cerrectly. Unless a programmer can
hold all of the relevent details and specifications of a progranm
in bis head at one time, it is very difficult to perform global

optimizations or simplifications of the program.

Our working set perfurmance data indicates that our
system referenced two more pages running the benchmark than
system 24,2, This did not come as much of a surprise. One of
these extra page faults resulted from splitting the code ouf the
reference name manager and address Space manager apart and the
other resulted from splitting ap:srt their shared data base. We
anticipate that when programs are converted to use the new
interfaces directly the extra page fault that was caused by
splitting the code apart will be compensated for. We expect that
since our code is smaller in total, by eliminating the simulation
code we will decrease the working set by a least a page. This
will make up for the extra page fault caused by splitting the
reference name manager and address space marager apart. The
increase in working set due to splitting apart the known segment
table cannot in itself be avoided. However, this !ncrease in
working set is :nly on the order of a half of a page and is

independent of the combined size of the new data bases,

-89-




We have not really put much effort into the performance
arguments above. We feel that the performance data which we have
reported above is not, in fact, a good measure of the performance
of 2 full implementation of our design. We claim that there is a
hidden performance factor which will easily swamp out the
performance effects we have been discussing. Fortunately, this
hidden performance factor is in our favor. The effect to which
we are alluding will not be seen immediately but will slowly
assert itself. This effect has to do with the gradual conversion

of major supervisor and user programs to use segment numbers as

directory specifiers. Since pathname resclution is fairly

expensive (even when find_ is given a pathname - segment number
associative memory), the use of segment numbers as directory
specifiers will save an average process 1 substantial amount cof

computation.




Chapter VII

Conclusion

We have argued that reference name management need not
be supported by the security kernel of a computing utility. 1In
particular, we have demonstrated a transformation on the Multics
system that removes reference name management from its security
kernel. Our 1esign has further simplified the Multics security
kernel by allowing directories to be initiated outside of ring
zero, and removing the concept of a storage system link from ring
zero. In the process, we have repaired an inherent security flaw
in the current Multics design that 2llowed processes to detect
the existence of objects in the storage system hierarchy to which
they had no access. This flaw resulted from having insufficient
access control on links and from ring zero’s failure to terminate
undetectable directories. Finally, we have provided a solution
to the problem of clearing find_'s pathname associative memory

when a directory is renamed.

®.e have used a technique in our redesign of the Multics
system that we feel deserves special mention. This technigue
involves constructing a careful lie to maintain the sccurity of a
riece of data. In our case, we constructed a security kernel
that lies about the existence of a direztory until the caller

proves its right to know of the existence of the directory. This

lie, which was actually quite easy to maintain, prevents a

9=




process from detecting directories that should be undetectable bv
pretending that all possible pathnames correspond to an existing
diruntory unl2ss the process has sufficient access to the object

specified by the pathname to prove otherwise.

We have implemented and tested the key points of our
design. This implementation has shown that our design is both
simpler and more efficient than Multics 24.2. More details of
our design than were presentec in the body of the thesis may be
found in the appendices that follow. 1In particular, appendix H
presents the actual programs of the address space manager

de.igned in this thesis.

In conclusion, we would like to note three observations
we made while designing a new a21dress space manager for Multics.
First, our address space manager, which is far simpler than the
current Multics address space manager, also is more efficient
than the current address space manager. The complexity ol the
current address space manager cost Multices both space and

performance. (One is tempted to believe that, in gerieral,

complexity added to improve performance is frequently

S

-

counterproductive.) Second, because Multics is an existing
system, vhe functiorality and use patterns of the Multics address
Space manager were thorouglily understood when we began ovur
research. A large part of the simplification achieved is the

direct result of insight extracted by ovs=erving the existing




implementation of these mechanisms. Finally, we noticed an

impressive threshold effect. As our design progressed it got
simpler and simpler. * a certain point, when our design was
simple enough so that all of the relevant details of the des’'zn
could be considered simultaneously, our design underwent a
further drastic simplification. This simplification was only
discovered when the mechanism became simple enough and small

enough to be kept in the head of one designer all at one time.




APPEN A

Structure of the Multics Known Segment Table

The main data base for the Multics system 24.2 ring
zero address and reference name manager is the Known Segment
Table. The KST is a pe~-process, ring zero segment. Lcgically
it contains three items. First, it contains an array of KST
Entries. KSTEs are indexed by segment number and contain all
per-process information necessary for the proper care and feeding
of the segment or directory associated with the indexing segment
numbe . Second, it contains a hash coded mapning from the space
¢f Unique IDentifiers onto the space of segmenil numbers, or
equivalently the space of KSTEs. This mapping provides the means
of locating the KSTE of an already initiated segment should it
subsequently be initiated by a different name. Third, it
contains a hash coded mapping from the space of names onto the
space of segment numbers. This association is mainly of use ¢to
the dynamic 1linking mechanism. The current contents of a KSTE

and their major usages are given in the following table.

-9Y4-




KSTE Field

forward pointer,
backward pointer

unique identifier

name pointer

inferior count

varent segment number

entry offset

dirz2ctory switch

Use

These pointers are used to chain
the KSTE onto a list of free KSTEs
when it is not in use.

The unique identifier of the
segment 1is wused to validate UID
hash searches and to properly
identify the corresponding
directory entry after an on-line
salvage.

This pointer chains together « list
of the reference names associated
with this segment or directory.
Stored with each reference name is
the number of the ring in which the
nam~ ‘< known.

The inferior count records the
number of inferiors of a directory
that are in the process' address
space. This information is useid to
prevent a directory from being
terminated while it has known sons.

This entry records the segment
number of this segment's parent.
It is used at segment fault time to
help locate this segment's
directory entry. It also is used
to translate segment numbers into
pathnames.

This entry, which records the
offset of this segment's directory
entry within its parent, is used in
conjuction with parent segment
number to locate the segment's
directory entry.

This flag, which is set to indicate
that the segment implements a
directory object, is used to
special case access setting fcr
directories at segment fault time.




APPENDIX B

Structure of the Proposed Known Segment Table

Our redesigned KST has been simplified and contains only two
components: a KSTE array, and a UID hash table. The contents of

each KSTE and their major uses are summarized below.
KSTE field Use

forward pointer,
backward pointer Used to thread KSTE onto free or
hash class list as required,

unique identifier Unchanged (a phoney directory will
have a uid = 0).

inferior count Unchanged.

entry pointer A pointer to the directory entry
for this segment.

directory switch Unchanged.

rings An eight bit field containing one
bit per ring. Whenever ring i has
this segment number initiated then
bit ‘A"¢f this field is on.

highest detectable ring A number that specifies the highest
ring in which this process has
established its right to know of
the existence of this directory




APPENDIX C

Proposed Address Space Manager Interface

The proposed ring zero address space manager interface is as

follows.

. initiate_ (dirsegno,ename,dirsw,link,segno,code)

dirsegno segment number of the parent (input)

ename entry name of target (input)
dirsw directory switeh (input)

link link (output)

segno segment number of target (output)
code status code (output)

possible status code values:

error_table_$segknown --- segment already known to process

error_table_¢$invalidsegno --- parent is not a directory

error_table_$noinfc --- insufficient access to return any
information

error_table_$nrmkst --- no more room in known segment table
error_table_$no_entry --- entry does not exist
error_table_$wrong_type --- entry is of the wrong type
error_table_$1link --- entry is a link

terminate_(segno,code)

segno segment number to be terminated(input)
code see above

possible status code values:

‘ error_table_$invalidsegno --- segment number is not bound to
1 an object
error_table_¢$infent_non_zero --- can't terminate due to
active inferiors
error_table_$known_in_other_rings --- can't terminate due to
‘ segment number being used in other
rings

~§T




Exgmple

To help clarify the ideas presented in this thesis,

let us consider the following scenariq in which a process tries

to initiate the segment >ad>b>cd>d>e>f in ring four. We will
assume that directory e and segment f do not exist and that the
process has no access to a, b or d, and append permission to ¢ in
rings zero through four. We have presented below a
representation of this path through the hierarchy along with the

process' access rights to each object in ring four.

"root" <(-- status
null
null
append

null

To simplify matters we will ignore the existence of the outer
ring reference name manager and we will assume that we are
operating in a virgin environment. What follows is how the outer

ring find_ would proceed in this case.




T —

step

step

step

step

step

step

step

step

call initiate_(0,"",1,l1ink,segno_of_root,code)

‘The root directory will be 1initiated, 1its detectable
field in the KSTE will be set to four, and & status
code of zero will be returned. (all processes have
status permission to the root directory)

call
initiate_(segno_of_root,"a",1,link,segno_of_a,code)

The directory will be initiated, its detectable field
in the KSTE will be set to four, and a status code of
zero will be returned.

11 initiate_(segno_of_a,"b",1,1ink,segn._of_b,code)

The directory will be initiated , its detectable field
in the KSTE will be set to zero, and the status code
noinfo will be returned.

11 initiate_(segno_of_b,"c",1,link,segno_of_c,code)

The directory will be initiated, its detectable field
ir. the KSTE will be set to four, and a zero status code
will be returned. In addition this initiation
establishes the process' right to know of the existence
of superior directories at least in rings zero through
four. This is reflected, in this case, by setting the
detectable field in the KSTE of >a>b to four.

call initiate_(segno_of_c,"d",1,link,segno_of_d,code)
The directory d will be initiated, its detectable field
in the KSTE will be set to four, and a zero status code
will b>? returned.

call initiate_(segno_of_d,"e",1,1link,segno_of_e,code)
The non existent directory e will be assigned a KSTE
which will be marked as phoney and the status code
noinfo will be returned.

call initiate_(segno_of_e,"f",0,1ink,segno_of_f,code)

No KSTE will be assigned and the status code noinfo
will be returned.

call terminate_(segno_of_e,code)

The segment number assigned to e will be released on
the grounds that e may not really exist.

~99-




APPENDIX E

ize of Programs

In this appendix we summarize comparison data between
the size of the Multics system 24.2 security kernel and the size
of our proposed Multics security kernel. We have only incluaed
data for the major programs that were affected by our design. As
a basic measure of the size of a procedure we have chosen the
number of words of text in its Multics object code module. This
corresponds roughly to the number of machine instructions in the
module. We notice that 1in most cases the procedures in our
system are markedly smaller then their counterparts in system
2u.,2, Our reduction of the security kernel by 3345 words or
about two and a half per cent may not appear spectacular, but the
reduction in size of the address space manager is seventy-seven
per cent. This has substantially reduced the complexity of the

security kernel. The reason we can make this claim is that while

the reference name manager in system 24.2 is not that large, it

is complex far out of proportion to its size.




0ld procedure

find_
makeknown
kstsrch
kst_man
makeunknown
initialize_kst
initiate

kst_entry_check

new procedure

find_entry
makeknown_
kstsrch
get_kstep
terminate_

initialize_kst

initiate_

kste_info
kste

validate_segno




NDIX F

Performance Data

In order to measure the change in overall performance
between our system and Multics system 24.2, we developed a
special benchmark program, This benchmark was designed to
evaluate only the most commonly used features that we modified in
our design: segment initiation, reference name management, and
segment termination. Specifically, our benchmark called tl.e old
ring zero initiation interface (1) to initiate a segment and give
it a reference name. It then wused the terminate by segment
number primitive of the old interface toc terminate the segment
and unbind the reference name. This was repeated one hundred
times. The virtual cpu time in microsesonds to complete the
benchmark was then divided by one hundred to obtain a normalized
performance timing datum. The tctal number of page faults for

the run was also recorded.

The benchmarks for botn systems were run on December
10, 1974 within ten minutes of each other on a dedicated
computer. The standard Multics system wused was designated as
Multics system 24.2. Our test system was identical to system
24.2 except as it implemented our design. Three runs were made
on each system,. The first run served only to cause dynamic

linking to occur and to bring the pages that our benchmark

(1) The old ring zero interfaces were simulated in our system,

-102-




touches 1into primary memory. The second run, whicn took no page
faults, was wused to obtain our timing data. (1) Multics system
24.2 averaged 11002 microseconds for each iteration of our
benchmark. Our test implementation was actually seven per cent
faster, taking 10226 microseconds per interation. The final run
was made after the contents of primary memory were flushed. This
run estiblished the size of the working set of our benchmark
since each page touched while running our benchmark produced a
missing page fault. The working set of our benchmark in Multics
24.2 was five pages. Our test implementation had a working set

of seven pages.

(1) Prior testing had shown that multiple runs of the benchma. x,
under identical conditions, produced times within one hundredth
of one per cent of each other. As a result one timing run was
all that was required.




A N G

Ring Zero Interface Complexity Data

This appendix lists briefly the changes we have made

in the ring zero interface of Multics system 24.2. We have

excluded from this appendix the changes we have made to the ring

zero address space manager interface as these changes have been

documented in appendix C.

Obsocleted Interfaces

hes_$chname_file
hes_$fs_get_path_name
hcs_$delentry_file
hes_$fs_get_ref_name
hes_$fs_get_seg_ptr
hes_$status_minf
hes_$terminate_file
hes_$terminate_name
hes_$terminate_noname
hes_$truncate_file
hcs_¢$set_be




Interfaces Converted To Specifying Their Target Object

By Segment Number Rather Than

By Directory Pathname and Entry Name

hes_g$add_acl_entries
hcs_$add_dir_acl_entries
hes_$add_dir_iacl_entries
hes_$add_iacle_entrices
hes_$del_dir_tree
hes_$delete_acl_entries
hcs_$delete_dir_acl_entries
hcs_$delete_dir_iacl_entries
hces_$delete_iacle_entries
hes_$get_author
hes_$get k. _author
hes_$gec_dir_ring_brackets
hcs_$pget_max_length
hes_$get_ring_brackets
hes_$get_safety_sw
hcs_$get_user_effmode
hes_$1ist_acl
hes_$1ist_dir_acl
hes_$1ist_dir_ijacl
hes_$1ist_inacl
hes_$quota_move
hes_$replace_acl
hes_$replace_dir_acl
hes_$replace_dir_inacl
hes_$replace_inacl
hes_$set_copysw
hes_$set_dir_ring_brackets
hes_$set_max_length
hes_$status_
hes_$status_long
hphecs_$add_acl_entries
hphes_¢$add_dir_acl_entries
hphcs_$delete_acl_entries
hphcs_$delete_dir_acl_entries
hphes_g$replace_acl
hphecs_$replace_dir_acl
hphes_$set_act
hphes_$set_auth
hohes_$set_bec_auth
hphcs_¢$set_dates
hphes_$set_dir_ring_brackets
hphes_$set_ring_brackets
hphcs_$status_btackup_info




nverte (o} & r
By Segment Number Rather Than
By _Directory Pathname

hes_$append_branch
hes_$append_branchx
hes_$append_link
hes_$quota_get
hes_$star_
hes_$star_list_
hphes_$quota_reload
hphcs_$quota_set
hphes_$salvage_dir
hphes_$star_no_acc_ck




APPENDIX H

The Address Space Manager Programs

We have claimed that the address space manager we
designea 1is simple, small and easy to certify. To substantiate
this claim, we are including in this ippendix the source ccde of
our address space manager for the reader's perusal. These
programs differ {rom the actual programs that ran in our trial

Multics system only in a few minor details. (1)

We will divide this appendix into three sections. The
first section contains a declaration for the KST. This
declaration is used by programs that contain a "%include kst;"
statement. The second section contains the PL/I1 source programs
that constitute the address space manager. Finally, the third
section describes the calling sequence and functionality of

system modules called by the programs presented in section two.

The Dbaseno and ptr PL/I builtin functions used in the
programs in this appendix are non-standard PL/I functions used in
Multics to manipulate pointers. A Multics pointer may be viewed
as a pair o! .ateger values. The first component of a poinier is
interpreted as a segment number by the Multics hardware. The
second component of a pointer is interpreted as a word offset

within tne segment specified by the first component. The baseno

(1) See appendix I.

~107-




builtin function cantructs a pointer to the first word in a
segment given a segment number for that segment. The ptr builtin
function constructs a pointer from the segment number in its
firsc argument, which must be a pointer, and the integer offset

which is its second argument.

-108-




/s J3TJT3UapPT anbrun
/s Aajua Jatp o3 aid

/s 3UNCD qUaWIIS JOTJIJUT

/& $311Q pasnun
\nouﬂzn mmmu »Louomnﬂv
\- mc

TJd a1qe30933p 3s3ydty
/¢ UMOUY ST quawdas STU3 Yoiym ut sZUTd

/s 238Y JOo Jaqunu juluwBas

/s 433uTod TaJd puaemioeq
/s Jd23utod 1ad paemyo]

/s UoT3eae1dap Aujua ISY
/& AJjua 03 asjurtod

/% 2@1qe: usey pIn

/g ISTT 983JJ

/a 3% hm pP3QI.1083p Jaqunu ucwamwn 1s3ay3 Ty
/s 3S¥ AQ paqQrJOsap Jaqunu UIWIIES 3SIMOT
/w UOTJIEJETODP J3pE3Y [SH

/s 2UsWIas 178H

/a - = = t1d-{our*isy - - -

/e = = - L1d-TouUT 38} - - - J1I4 FANTONI AN3

‘paudtre (9t) 3/Q PT
‘paugdtreun (J3d dAajqie

‘(Lll) UTQ PSXTJ 3uUNODJUT
‘(S) 319 pasnun

(1) 37q MsJa1p

‘(€) UTQ PAXTJ _Jpy

‘(8) 31Q s3utu

‘(Ll) utq paxyy oudes

‘(gl) 319 dq
‘(gL) 3ta dy 2

‘paudtie (dais)) paseq 3aysy
¢aqd dagsy

$99S) 9T (Jasyldry:3asmor) Auajus
‘paudtreun (gt;_3tTa (dq *d3) €

. (L2t _:0) znmu pIn
paugdtyreun (i) 37q (dq ‘dJy) ¢
1STIT 9ad]J
‘utq pax1y 3usy3Ty

_ ‘utq paxT; JasmoT
‘(($Fss38)) Jppr) pasen pauUdTie IsA

t9xa ¢$Jas sy

N NN N

(4
)
I

Z

3714 3ANTONI NID3E




uunxlmuaamwuﬂ:a pua
pua
T = ouBas (1) AJjua-38)

$(((7) Aaqua°3s)) Jppe ‘(3STT 9343°3s)) umomv uygpeaJdys 11ed
‘{¥asydTy 03 Fasmol = T Op
{Qu0u = ysey pin-3sy
1Qquly = 3sI1 3943 38

"wvnsuum = Basydty- sy
{JasmMo0T = BasMmOT* s

{98 apniout §

$(aad *taad) Lazus 3x? :ﬁ«mnvgsu
‘(L1) uTq pexXTJ (1 ‘BIsyITY "FISMOT) TOP

/a

183 AQ paqrJcsap Jaqunu quawdas qF€aYBTY - - - (L1) UTQ PaXTJ BasyITy
18} £Q PpaqTJOSap JOQWNU 2USWIIS ASIMCT = = = (L) UTQ paxT] JFasmOT

$(BosydTy *Josmol) 3sA SZTTeTITUT JTeo :3IDYSH
UTJJTA ® PITNG O3 UOTJEZTTETITUT §8300J4d JuTdnp paTTed ST s 92TTeT3TuUl

s/

{(BasyBty ‘J9smor) ooud
$38) 8zyTreI3TuUY




A u/
3R <opPNIOUTY

$((SE) uTq PaXTJ ‘(1) 3TQ “(LL) U4 PXTJ *(1) 31q ‘psudire (9¢) »ﬁo ‘a3d) AJjua 3x3 Tumoudaiew
(dad) sudanzaa ((Lt) utg paxij) AJjua 3x3 asnurt¢oudas oyepjLea
. . . AMmmv utrq paxTJ ‘ButhueA (g) Jeyo ‘uqd
‘paudTTe (9€) 3TQ ‘(Li) UTQ PuXlJ ‘pausire (2t) Jeyd *(L1) uTqQ PaxXTJ) AJ3ud OJuT Youedq 333 Top
) T $(SE)_utq pPax1J 4x3 (9dAy Buoum$_a1qey_JOads
i .xcMHw 91qe3} JOJJdd .vam¢oc 9]qe3_J0J4Ja_‘ouFespITRAUT$_3TqQe3_JOJddad
‘AJqUa OU$TITQRY JOJJId ‘4SAWIUG 3TQE] JOJJ3 ‘uMmounNTas¢$ aTqey JOJud ‘OJuTOU$ ITYE] JO0JJ3) TP

. *(£) 3ITUT OT3EYS (L1) UIQ PIXTJ AUT

(3) 37Ul OT3EIS (LL) UTq PaxTy K10308471p

(1) 3TUT OT3E3S (L1 ) UTQ PIXIJ juawdas

‘(Q) 3TUT OI3B3S (L) UTQ PaxTJ AJius ou

: (Quiu) 3TUT om»mum (L) 3TQ 9TqIssaooe
(Qu0u) 3TUT OT3e3S paudire _(9f€) 3Tq pIn Aauoyd
‘paudiie (2&£) Jeyd sIueus
‘(L)) utq paxty ad4sy
‘paudire (9¢) 3Tq PIN

b 1qQ paxuJ vaoolmnumvmw

utq I v

‘(L1) urq pax1J Aocmmmme ‘oudasd ‘ouBas e .ocwwmw
‘Buthaea (g9i) 4eYD NUIT

‘BuThaeA () JEUD NUTT_E
‘(1) 3TqQ (OJuTOou ‘MSJTp ‘MsJTp_eE)

‘(g) JBYO BWRU3 B [OP

ad&y3 Buoum mma Jo s1 309f{qo 333uey --- adA3 duoum$ aT1qe3_JOJJd

JO30aJTp B j0u ST jusdged --- JTpejou$ _a[qey_.doauds

Jaqunu juUaWAas juaded PITBAUT --- OUFISPTITBAUTS 9TQE3I_JOJJd

NUTT B ST AJjud --- HUIT$ _9Tqe]_Jodudd

_ 4STXa 30U S30p AJjua =--- AJjuUa Oug_aTqey_JoJddsd

91Qqe3 4 USWAIS UMOUX UT WOOJ 3JOW OU =--- 73S WIu a[qes _Jodda

UOT3BWIOJUT AUB UJN3aJ O] SS300B JUITOTJJINSUT --- OJUIOU$ aTqQey_JOJdda
§53004d 03 uMOW] ApeaJle (AJO3D3JTp JO) JUIMIIS --- UMOUATSS$ a[qe] JOJuJd
:sanfeA apod snje3s arqrssod

(3nd3no0) 8pod snie3s --- (GE)UIq PIXTJ 3pod
(3ndgno) 333ae3 JO meEMM wcmemwm - mwwwnmwa vmwwmoouwww
: : . e —— . -
(3ndut) AJo3094d1p B mw Mnucw JT 3498 === Mﬂwpﬁn MSJTD
mu:acwv 33BT3TUT 03 AJO309JTP UT AJjud JO 3weu --- (s)4BUD ameua
(sndut) A20303J47Tp juaded JO Jaqunu juawdes --- (Ll )ulq paxyy oudasd

$(9po0 ‘OuBec ‘HUTT ‘MsJTp ‘oweusd ‘ouBasd) 9jer3TuUl [IEO :JovsSn

-aoeds ssaappe ss9004d ayjy o3uT 303{q0 ayj dem ATTen30e O3 Pa[IeO §T UuMOUXaNew
uayy PIIeA ST 38a9nbag ay3 JI -uorgsanb ur 303{qo ay3 33BTIITUT 03 IUITJ

S Ja{[ed §31 $33EPITRA ATUuO anpow STy °20eds ssauppe _ss300J4d B O3UT

pad8ew aq 03 303{q0 ue SMOTTR YOTUM 33EF 0udz 3uTd 3yjy ST 93BTJITUT (---

s/

¢ (9po0 e ‘ouFas B ‘NUTT © ‘MsSJTp B ‘aweua e ‘ouldsed e) doud :TajeIlTUT




——

{TojeT3TUT pus

N:L:won t497TEO 03 U
_ _ +9pod udnjzaJ pua
faaTred 03 udniad 03 038
{9podo = agpoo e
$(GE) urq paxTj 8pod
wMenoov ooud :3pod U
o ‘NJW pus
{(9p00) 3pod uunyaJd ITEO
foudes = oudes e
$(9pod ‘arqrssavoe ‘oulss ‘MsJuTp ‘pPIn ‘da) uMoudaqew TTED
3 wﬁwv 1TQ 91qTIssadoe
pauatTe (9£) 319 om:
Jad de

‘(91q1ssaooe ‘prn ‘da) ooud
‘tpua
‘pua
- {(a1qrssaooe ‘prn ‘da) NMW [TeO asT?
u»ma>ulw:opza a[Qqe3 J04J4d) 3pOO UJUN3ad [[Ed uayy
MSJTP_ ¥ (AJ03094Tp = 3dA3) | ATUTP ¥ (auswdss = ma>u~ JT
‘pua
$(AUTTY 2TQe3 JOJdd) 8pOO uJnjad TTEd
IqUTIT = AulT ®
‘op uay3l
- & = Jur = ad4y Jv
$(Auaqua”oug aTqey JOJdd) IPOd uunjad [TEed usyjly Aaqua ou = ma»u.uﬂ
‘op asIa
"“mnoo~ 9poo uuanj3aJd [Ied 9sI3
—E uﬁmmn ssaoo®e prn ‘da) NMW ITeO 9SI®
{(a1qissadoe_ ‘prn Asuoy (ougasd) ajdaseq) NMW TTEO uauyl
% Aaoyoeutp =_ adA3 JT uaujy
at _  MSJTIp JT uayj
oucwocm aTqe3_Jouad = 3pod J¥
$(apod ‘jurl ‘da ‘prn ‘adA3 ‘sweus ‘ouzZ~sd) oJutr youeudq 33 17e2
top asTe

{(ojutoug$ Piqe] JOoJdd) PO UJdnjad [[ed °ST3
$(919q1888008€ ‘ptn Asuoyd ¢ (oudssd) Jujdaseq) NMW TI1€0 uaysy
= MSJTP JT Uuayj
1 ‘3 + prn Asuoyd = pr-ajsy JI
¢ (4TpR3OU$TRIQET JOJID) BPOD UJNIBJ TTED UBY3 MSJTP 3SR JT
{(OuPeSpPTITRAUTS 9TQe3 JOJJd) 9POD UJNjaL TTEBO UaYy () TTnu = dogsi JT

{(oudesd) ssnurgoulas 93BPTTEA = daysy

\ mwnmcmlm = Jurus

/§ WOU3 9JUBYD 3UBD JBTTEBO JNO O 4/ {Msa ® = MSJIp
e /s Sausunzae gnduy Adod "\ »o:uommmw = oudssd

Jnjad

1oP
Jnjad

/a

-112-




s/
38y apnyouty
fur3aTINg (JasqQns ‘IInu ‘paxTt) ‘ousseq) TOP

$((SE) utq paxty ‘J3d ‘(LL) UTQ PaxXTJ) AJjus IX> dAJISII$DISH
(J3d 'uaad) hnwcw 1Xa ut¢$peaJtyy
‘(a3d ‘a3d *(1) 379 ‘pPulTle (9E€) ITq) AJjus 3X3 UYOJSISH
‘(ugd) sudnyasd ((LL) UTQ DaxTJ Jqua 3xa dagysy 393

.mﬂm_ uyq uﬁthw suangad () Aajua 3xa 133$T18A8T TOP

_ L td3d (dysey ‘dag~md
‘(GE) uTq paxTJ 3IX® (OJUTuLu, 8Tqe3} Jodds ‘uMounFacg =21qe3 Lnnnuw
‘(€) utq pax1y Juta TOp

xmm w UTq PIXTj #pod
-

179 81QIEsa00E
L) nan paxt] oulass
(L) 379 _msJ1p
‘paudTTE(9E) 3TQ PIN AJjus
‘a3d da TOp

/»

Auzau:ovwuoon:umunuuzAmmCﬁnuwx«uwvoo
(andut) ~uaaed s37 Jo 3v8[qo 8yjz 03 §8300e sey ssadoud JI 388 =-=-- ([)37QqQ a7qISSadOE
(andqno) 309fqo wuu 03 punoq Jaqunu judwdsas --- (L] )UTq paxyj oulas

(3ndut) Aao3dadip e ST 303{Qqo0 uw 39§ === (1)31q_MsJp

(3ndut) ,03(Qo ay3 Jo JITJTIUSPT anbjun --- paudTTe (9€;31Tq PIN AJajus

(andut) youeuq s_303(qo aya o3 Jgajurod --- uad de

$(ap0o0 ‘371qTsSa0O0R ‘ouBas ‘MSJTD ‘pPIN Aajus ‘da) Tumoudadew TTEO :30VSN
*saanpadoud Buta J33N0 03 ITQISS9O0E JOU BJUB ~ UMOUNdINEBW O3

passed squaum3Jde 3BY3 aJns aq 03 SJ3T[eO s3] s3Jinbed uoTizdunsse s1yf
*Jurqnoaxa st 3T STTUM paTJIpow aq 30U TITM savamndae 3ndur s3T 3BY3 saunsse
L@:up:m 1 .uw:nﬁmnmunm uaaq Apeadle sey paijroads quawdas ay3 a3BIITUT

03 Y3TJd s52004d 3Yj 3BYJ SoWNSEER a[npow STY]L °‘20eds ssadppe s Jaa1Ted

§37 o3juty (msayp Aq patjidoads) Auoj0aJdip JO jusawmBas B sdew ~uMouNaNBm (---

a/

{(9poun ‘a1qTsSsaook ‘oUBas ‘MsJTp ‘pia Aaqua ‘du) ooud
TumouMINER




TumoudaNeEw pud

fuangyad

_ ‘pud
$((LL ‘(dhuqua-ajsn) oudseq) PaXTJ daqs)y 183 = dajs)y usuj
() TTnu = dAgqua-aysy Jy
Y3uTd = Jpy-a3s

$(Japy-o3sq ¢ Butd) ITTym Op ualy

2TQTEs200¢€ .

/a Jutd gado.d uy umouy se 336} NJew g/ ‘Qulae = (I ‘1+8uta ‘sBuraca3s)) JIsqns

/s SdJotJadns JO apy a3epdn 4/

y e ‘pud
‘pTn AJjud = pT- 218
ﬂnnw = dAaque- 998y
{0 = JUODJUT - 338
/e 3ISA UT TIVI #/ ‘msayp = znpﬂn.wwmu
u—+u::ooucﬁ.ounu ¢- degsnd = junodojur-ays)y (- daisyd ;
‘((Ll ‘(da) ouaseq) paxtJ) daisy 208 = daas)d
/s 3UNOD JOTJSJUT §_ 3judded quUaWBJOUT 4/ fop uaysg
: () ITnu = da J¢
/4 SSBTO ysey o3ut JISN Peaayl g/ {(deasy ‘*dysey) utrgpesadyl 17ed
fyangat uayy ¢ =_ 9podO JT
{(9poo_‘daqsy ‘oulus) aAJOsoU$dISH TTed
‘oJutoug aTqe]” JOJJd = IPOD uUIY3 °[QTSE3VdE  JT
/a J1SY Mau B 33BO0TTE 3IsNUW 4/ ‘fop wnHm
‘pue

‘ouBas- 998y = oudas
‘umounBas¢ oTqe3 JOJJd = IPOD
/a AIS)H @21qe30933p e sey Apeaayre 309[q0 4/ top uayj
I»V 1inu = daisy J1
{(deqsy ‘*dysey ‘a1qysssdde ‘pPIn Lucom yodisqsy [1EO
$() 39B$T3AST = BuTu

/a

-114-




SBUTJ <3y3jo

£1s)y spnyout ¢

furarIng (J3sqns ‘TInU ‘paxtJ ‘ouaseq)

- _ 4(GE) ulq PaxXIJ 3Xd cuBasplieAul — 91qeq_J0oJddad
£(GE) UuTq PaxTJ 2aXa (oJaz uou 3udJul$ I3Tqel JOJJI3d ‘§JUTJS JIYQ0 UT UMOU$ 91QE] JOJdJ3)

t(utq uwxﬂmv
‘(a3d) suanidga ((Ll) YTQ E3XTJ)

¢ (aa3d) suanjad mewv ulq paxtJ
(L1

suanjad AJqud 3x3 393¢T3A3T

Jqua 3X3 asnutgoulas s3epiTeA

.“Luam Kajua 3x3 qno¢peadys
(43 Kaqua 3xd3 2343$9138
W Aaqua 9xa daaysy 49

) 'uTq paxTJ) AJjua 3IX3 303UUODISTD

SJCTJaJUT 2AT30e 03 aNp 23BUTWISY] 3 UBD --= OJSZ UOU 3JUOJUT

‘(L1) UuTq paXTJ oudas
‘utrq paxty Jutd
‘aqd dagsnd

ummmv ulq paXIJ apod_e
‘(l]) ulq paxyJ oudas e

/x

—91qQeq_JOoJddd

Ul pesn Juraq JaqUNU 3JUIWISS 03 SNp IJBUTTII] 3 UBD --- nmcﬁp|nw:woldedzo:xMldanma|ponpm

29alfqo ue 03 punoq 30U ST Jaqunu JuawWBas

-—- OuBasplTRAUTS 2T1GE2 JOJJd

:sanTeA 9pod sniyels arqyssod

(3ndqano) 3pod JOoJdJd - = = Mmmw utTq paxTJ apoo

quamdas ayj3 JO Jaqunu Juldwdas - - -

L1 )utrq paxtj oudss

(2pod ‘oudas) “ajeuTwWJ"] TTED 3QVSN

*JuTd uotqdajoud

§ Jayles ayj uf Isn U] J3JUOT

ou se pajJew ATaJaw ST FISH oYl °Pa30auliodsTp j0u ST Jequnu JuouBas

ay3 ULy UTE3QO 30U Op SUOT3TPUOD 3sayj JI °3uauwndae Yo3IMS paadasad ayj 4q
vwwuﬁcwmn se 100d paAJaSaJ JO 39JdJ 3Y3 03 PauJdnyad §1 Jaqunu JuamWIIE 3yl pue
punoq SeM 3T UOTUM 03 303(Qq0 ay3 wWodJ pajzdauuosIp ATTeoTsAyd €T Jaqunu JudwWISE
ay3 uayz sBuTJ J3Y3o AQ asn UT 30U ST JIQUNU UBWIIS Y3 pue SJOTJIIJUT

ou sey FISY aya JI ‘punoq seMm 3T UYLTyMm 03 302(qo 3ays wouJ Jaqunu JudWI3S e
purqun 03 s€900ud B SMOTT[E YOTYM OJdZ Buld 03Ul 33e¥ ayjz ST ~93BUTWII} (===

$(3poo . ‘oudas—e) ooud :T 3jeUIW

..

s/

T°oP

1°P
1°P

0P

T°P

s/
SELY

-115-




/e T00d 384] UT 238% 31s0dap o/ ‘

{|=qunodjut aysy ¢- degsxyd = jJunodJul‘e
‘(dAaqua‘a3sy ¢~ dayex) OudssEq) PexXTJ)

(L
/s 3UNOD JOTJaJUT & JuaJe

JuswaJoap
/s OJ3Z UOU JUNCOJUT JT @jBuTWJIR] 3 Ued
\.- wCﬁL Jayjoue Ut IjBUTWII] Q\CQO -\

.3 BUTJ STY3 UT uMmouNun 3jeuw

/x T€39T ST TIeO 2.uns axeuw
/s WAY3 wwcmco 3 _UBD JITIED JNO 08
/s sausungae 3nduy jo sanjeAa Adod

fT9jeutmIL] puI

fuaniqaud cuanjad
iqiaoqe pus
_ tudnjag o3 o
{apoD ENjE3E = Bpod B
. “mmmk ulq paxij apoo snjiElE  Top
{(apod snjeys) aJnpadoud 1 4J0Q8

fuanijad

{0 = apoo
ea4J§a18% T1E0
InogpeEaIy] TTED
303UUCOS TP [T
tpua

dajysy)
X

t{oudes)

gy ¢= dazsid
988 = deysyd
s/ <Op uayjl
. mﬁlﬂazc =_ ddajue-a3sy J1
s/ { (0J4az uoUu JUDJUT$ STQET JOJJd) 3JOQE TTED Uay)l
_ 0 =_ 3unodjur-aisq JT
$(sButd Jayjz0 ul uUMOUX$ 9T1Qqe3 JOJJl) 3J0qe TTED U3yl
QuQu_=_ S3UTJ°3381 JT
s/ $Qu0u = (I ‘t+3utd ‘sBufa-83s)) Jisqns
) _ Y() 393¢19a8] = Buld
f(ouBasprTeAUT$ 27QEY JOJJ3) 3JJOQe TTeD uayjl
(L TTU = dasy JT
¢ (ouBes) asnur$ouBas” a3eprrEA = dagsy
foudas B = oudss

218

s/
s/
s/




tyousqsy pua
f{yojeu pua
$(Qu0u) udniyad
‘pus
$(Quiu) UJN3IBL UBYJ QuOu = (JPYU = L ‘2 + Japy ‘sBurd-a3sy) Jisqns JT
tapy-s3sy = Japy asTe
$(Buta ‘apy-eqsAq) xew = Jpy uayj
aTqIssadoe J1
top uaya
(Butda =< Jpy-*a3ysy | 3TqTssadoe) ¥ PI°a3sy = pin Ji
£((1) 31qQ) suanjyaua “v ooud :yojeum
‘uanjad
$() Tinu = dagsy
‘pus
fuanjad uaysz () yoajew Jt
$(djy-a38q ‘daigsy) u3d = dagsy
! . - . _ +(Qu0u =, dJ-a3s)) aTTuym op
$((((1 ‘ysey pIN°3sy) UOTSUdETP ‘(PTN) PIxXTJ) pow) Ysey pIn-3sy) Jppe = dajsy aumms
$() 393¢$19A9T = Butd

f9s) spnyouTty

£((€) UIQ PaxyJ) suJnjaa () AJjus 3xa 33B$TaAs]

‘utqaTINg (uotsuaumyip ‘pom ‘Trnu ‘u3zd ‘uappe)

¢aqd dysey

‘(€) ujq paxi, (Jpy ‘Juid)

A va 317Q 3[qyssadoe
pausite (9£) 3TQ PIN  TOP

/w
(and3no) TTNU BST@ PUNOI JT FISN Padrsap ayjz 03 adjutod ---- a3d dagsy
(3nd3no) puom peaays sserd ysey ayz 03 Jajutod ---- aqd dysey
{3~dut) quaaed s771 JO 309{Q0 ayj 03 sSsadoe Aue sey ssa00ud ayj3 ;T 49§ =---- vauﬂn a7qIssa00e
(anduT) J0J payodeas 303(q0 JO PT msmﬂ:: -=-= DPAUITTE (9£)31q pPIN
¢ (dagysy ‘dysey ‘a1qrssadoe ‘pIN)YoJsiIsy [TEO :IDYSN
*q0afqo 393ue) wsw Jo quaued aygz ao 308{ Q0
3334eq 3y3 07 S5300® SBY JaTIeO ayj3 JT ATuo JuTyoqew e YOns WY3TJOSTE Butydjem Jajesm B Isn
vwsoo yoJsasy ‘suosead uU0T39930ud 403 Aaess’osu 30U uaym 309fqo ue ow sJaqunu juam3as
ardr3Tnu Jurudisse JO asuadxa ayjz 3y °pPa3eTITUT Jaqunu juamlss ayj oAey Aem Jutd mewaz ou (¢
pue ‘3uTJd §_JOTTeEO 3Yj3 UT aTQe3039p 2Q 3ISNE JaqUNU JuaWIBS BY3 (2
‘(ptn £q patJrauaprt anEWowﬂno 3084400 3aYy3 03 puUNOQ 2Q 3SNW JIQUNU JuUawWIas aygy (|
:aJde Joqunu quUam¥as USAT3 e uaNg3aJd 07 Yousisy J0J padinbaa sUOI3TPUOd ayp
*punoj aq udjew ® TTIM FISH @Y3 03 punoq 393(q0 ayj JO a0Uu3STXd a3 30933p 03 JUITJ §3T
paysTIqease sey ssadooud ayj J1 ATUQ °*pJaom peadyjz sseld ysey ayj pue padissp FISH aysz 03
sJajurTod SuJniSJa pue afqel Ysey JITJTIUSPT anbrun IS 9Y3 S3YOJedS UOUEIEN (==~

&/

f(daasy ‘dysey ‘a1qyssadde *pin) do0ud :Ydas3sy

.- - - - ; . e i




£348) pue

P fudanjada

$(daysy ‘(3STT ©994J°381) Jppe) ul§peadysy TTEd
‘oUB9S 9ABE = OUBIE° 3351

Q404 = (9483) dadsun

‘ou8as-aqsy = OUBaS aAES

f(dagysA) Kajua

‘uanjyaa
uc = 3podo
SLIBYD 93BUTWID] g/ £Qu0. = dqcaasy ‘dj-a3sy
fouBas-a3sq = oudss
o3 uMawunxv jno¢pesaysz 1ieo
$(d3-3STT 994338 ‘(38A1) appe) Jad = deagsy
fpua

fuangaua

f3smaug sTqes JOJJd = 3IPOd
N top uaysg
QuOu = dJ°38T] 994338 JT
f(apoo ‘da3sy ‘ouBas) Aajus

HEY B ETEN

381 apniout ¢

$(GE) UTq POXTJ 3X3 3Smau$ 2TQqe3 JOoJJud TOPp
‘urgTIng (o9dsun ‘uazd ‘appe) 1Op

uﬁppaw AJque 3x9 qnogpeaays
‘(uaad ‘a3d) Aajus 3xa urgpesaayz TIOp

$ (L) JT1q pax1y ouBas aaes ‘oudes)
(GE) utTq pax1y 8poOd 13p

(3nd3no0) 9pod JOJJd = - = MMMVCﬂn amxmu wvmm
H - - .

Au:aM:O\p:QCHV dags)y ayjz 03 J33u J3d degjsy
(3nd3ano) usqunu judwBas - - = (Ll) UTIQ PIXTJ oudas

{(dags)) aoaj¢$aisy TTed :IDHVSA
.wnﬁﬂ 99.4J 3yj 03u0 papeauayy ST 338 ayJl
LmuCﬁoaanucwumxmcw>ﬁLwnezcucwawonmnwmpuompuﬁwunxAnnn

¢ (apoo‘dagsxn‘ouldas) 3AJI9S94$23SN TTEO :IDYSN
ASTT 994) 2U3 WOJJ 238X B SIOBJIIXD 3AJI9SdJ$IISH (---

sJaqunu quawdes JUTAJ9s9J pue Jutrssd) JO suoTIdUNZ Y3 saptaoud aj3sy
s/

£() ooud :a938y




tdaqsy 998 puas
$(((oudas) LJaqua-qs€)y) JpPe) UINad
umAv TINU) uanjad usyy
wonswﬂs.umxAOCMwn"vn:oa.unxvocwvnuﬂ

,fuTITING (JppE ‘TINU)
(Ll) UTIq Paxyj oudas Top

{98 apniout ¢
/a

hwxmounwpcwoauuu.nua aanx m
Jaqunu quawdas ay3 =---- (Ll)UTq paxty ou MF

‘(ouBas) daysy 398 = daisy :39V¥SN
41SY pa3ero0Sse ayj3 09 Jaqurod B 03UT uaqunu juawBas e sajersuedy daysy 388 (---
./

t(aad) suunyaa (oudas) ocud :daysAy 395




fouBas a3epTIIEA PUd
{Tead pus

f(dags)) uunjaud
$(() TTnu) uanj3ad uayy (QuOu = (dAajqua-cajsy) dadsun) = paudtsseun JT
$(() TINU) udn3adJg uayl () Trnu = dajsy J¥
‘(ouldas) daisy 398 = (Jaysy

‘paudTie (1) %7Qq paudisseun TOp

f(aqd) suanisa (paudysseun) 20 t1eas

$((Qu0u) TEBA3) uanyaud
{(a3d) suaniada (ouBss) Lazusd tesnuy

$((Qulu) TEA3) uanqdug
{(a2d) suanqaa (oudss) Laqud :994)

$9s)y spnyoutry
furaTiIng (%edsun ‘Tinu) TOPp
$(aad) suangda ((LL) UTQ PaxTJ) Aajus 3x3 daqs® 393 T1OD
'(LL) urq pexyJ oudss TOPp

/a

(andano) degysy ayj o3 Jdjuyod - - - a3d da3ysy
(3NduT) J9QENU JudWBIE - - - (LL) UTQ PIXTJ ouBss

{ (ouBas) asnur$ouBas ejepyTea = dajsy :3OYSN
309fqo ue 09 punoq ST JIGUNU JuAWBSS Y3 JBUJ 99 03 SYOIYD ISNU{$oUBSS 93BPTTBA (===

¢ (ouBes) saajgoudes aqepyrea = daisy :3NYSN
894] ST Jaqunu juawBsS aYj3 JBY] 99§ 09 SAOBYOD 93JJ$0UTFIS 23BPTTBA (---

-pauanyad s} Jajuyod [TNU SY3 UIYJ UTEBIQO 30U SIOP UOTITPUOD Paje3s 8yl JI

*S$PTOY SUOT4TPUOD JerndIjJaed ® JT 99§Y pajBTO0SSE mcw 07 Jdjutod ®B suanjad AJaqua yoelm
SUOTAOUNJ UOTAEPTITEA 33SAi NJasn ATTeJdauad sapraoad ouFss 93EpPITRA

s/

umv ooud
:oudssT 93epITRA




foJut 9364 pua
o fuanyau
{(398sJJu youeuq ‘dAuqua- (oudas) Aujua-°3sy) Lwa = dAajua* (ouBss) Aajua-3s)
{(398JJ0 youeuq ‘oudas) Adjus

numw*uqlcocmnn!mumva:

tuangad
{0 = 9pod
tdAajua-asqsy = dyoreuq
fpua

fuangyad
tKaquaoud a1qe] JOJJd = mmww i

() TInu = dAaqua-aj3sy JT
{PT-a3sy = pIn

fpua
fuanyau
fouBaspITeAUTS 92TQe3 J40Jdud = 3pod
top uayjl

TTnu = dajsyq J¥
{ (cuBes) mn:CaaocmmewumuaHm> = dajs)

983 apnyouTy

{(a3d) suanjad »Ahpv urq paxtj) Aujus 3x3 asnui$oulas ajeprIeA
$(GE) uTqQ PIXTJ aXd (Aajusud$” 91qe] J0Jud ‘OUBIESPTTERAUT$ 3[qe] JOJJd)
. ‘paudiTe (9€£) 31IQ PIn
paudTTe (gi) 37Qq 3986Jj0 youmuq
¢a3d dyoueuaq
.Mmmv utq paxtJ apod
*{(Lll) utq peoxTJ oudss
(3nd3no) apod snje3zs ---- (GE)UTQ PaxXIJ apod
(a3nd4no) quaued ur 3099fqo Jo yodueaq JO 396JJO ---- omcwamm (gl) 3TQ 39sJJ0 ydueuq
(a3ndqno) usqutod youeaq ---- J43d dyoueuq
(3nd3no) 398(qo ay3 Jo J3TTTuUapPT anbiun ---- paUBTIE (9E€) 3TQ PIN
(3ndut) 303(Qqo 9ayjz Jo Jaqunu JuawWIsE ---- (L]) Uulq paxyj ousdass

{(398JJ0 youeuq ‘oudas) 3983JJ0 youeuaq o3epdngojuy 936X [Ted :3IDVYSQH

*A403094TP 9Yy3 uly3zITM youeaq ayjl Jo

JO UL,3BO0T Mau ayjz 3097JaJ 03 2383 aYyjz uy Jajutod ayjz sazepdn 31

*£A107094Tp ® UT AUsjUd UB paAoW SBY JaFeATeS IUTTUO U3

3eY3 S20Tq0U 3T uaym walsAs aTTJ] aylq AQ pa[IeO ST 396JJO0 youe. § aj3epdngojur 93sy (---

{(epoo ‘dyoueuq ‘pIn ‘ou.d6) OJUT 936} TTeO :IOVSN

‘youedq paJIsap aYz 9238007 pue A10309J4Tp juaaed ayj 00T 03

pasn ST UOT3BWJOJUT STYL °yodueuaq s 309(qo ay3 Jo ssaJuppe ayj se [[9M se
Jaqunu juawBas B 073 punoq 309[qo dYj3 JO PIN 2Yyj SuJdni3ad oJul 33Isy (---=

{(9poo ‘dyoueaq ‘pin ‘oulas) doud :ojutr @

Iop
Top

1°P
/s

s/
18X

-121-




--=> get_branch_info

This file system routine is called by initiate_ to get
the attributes of a named entry in a directory. If the caller
has no access to the named object (if it exists) or to the parent
directory then the status code error_table_$noinfo is returned.
The reader should note that get_branch_info must read the access
centrol 1list of the directory containing the named entry if the
entry does not exist or if the process has no access to the
entry. To 1locate the access control 1list of the containing
directory, get_branch_info must call the kste_info module of the

address space manager, a recursive invocation of the address

space manager.

Usage: call get_branch_info (psegno, ename, type, uid, ep, 1link,
code);

psegno fixed bin (17) --- directory segment number (input)
ename char (32) aligned --- name of entry in directory (input)
type fixed bin (17) --- type of the object (output)

0 -- no entry

1 -- segment

2 -- directory

3 -- 1link
uid bit (36) aligned --- unique identifier of object (output)
ep pointer --- pointer to the entry of the object (output)
link char(*) varying --- contents of the link (output)
code fixed bin (35) --- error code (output)




-=-=> thread$in

This routine adds an element to a two way 1linked 1list
of elements. The first word of each element contains the

necessary forward and tackward pointers.

Usage: call thread$in (where, what);
where pointer --- pointer to an element in the list after which

the new element is to be threaded.

what pointer --- pointer to the element to be threaded into
the list.

-=-=> thread$out

This routine threads an element out of a two way linked
list built by thread$in.
Usage: call thread$out (what);

what pointer --- pointer to the element to be threaded out of
the list,.

--=> level$get

This routine returns the validation 1level of the

calling procedure. 1In all cases considered in this thesis the

validation level of a process is equal to the number of the ring

in which the prccess was executing when it called into ring zero.

Usage: ring = 1level$get ();

ring fixed bin (3) --- validation level of the process.

-123-




---> disconnect

This routine
process' address space
that segment number in

table.

Usage: call disconnect

segno fix»d bin (17)

physically removes a segment number from a
by zeroing the segment descriptor word for

the process' virtual address translation

(segno);

--- segment number to be disconnected.




APPENDIX I

Unimplemented Address Space Manager Functions

In our discussion of the Multics address space manager
we omitted three mechanisms that it currently supports. These
mechanisms, which are non-essential to our design, were omitted
to simplify our presentation and avoid confusion. In . this
appendix we will briefly describe these mechanisms and show how

they fit into our design.

I.1 Reserved Switch

The Multics initiation and termination primitives take
a reserved switch argument. In the case of initiation, this
switch specifies, if set, that the caller wishes to specify what
segment number to bind to the object when it is initiated.
Naturally, ring zero must check that the caller has in fact
reserved the segment number. When the ring zero initiation
primitive is called without the reserved switch set, then ring
zero chooses a segment number from a list it maintains of free
segment numbers. This segment number is bound to the object and
returnea to the caller. 1In the case of termination, the reserved
switch specifies whether the freed segment number is to be

eligible for assignment when a free segment number is needed.



The reserved switch must clearly remain a protected
security kernel mechanism in our new address space manager. Were
this not the case, one protection domain could cause another
protection domain to malfunction by using a segment number that

the first protection domain had reserved.

During the process of initiating a segment, an
attribute 1in its directory entry called a copy switch 1is
examined. If the segment has the copy attribute, then a copy of
the segment is made and this copy is made accessible to the

process instead of the original.

We ~an use the mechanism of reflecting information out
to an outer rime by setting a status code to remove copy switch
processing from ring zero. This is possible since the current
initiation primitive takes an argument that allows a process to
bypass copy switch processing. Together with the fact that no
rir 3 zero procedures or data bases have their copy switch set,
this insures that the protection mechanisms of i':e system do not
depend upon the segment copy on initiation facility. To take
advantage of this, our new initiate primitive will not process

the copy switch. Instead, it will always initiate the target

segment and return a status flag indicating whether or not the

segment's copy switch was set. The outer rings can then worry




about creating a copy of the segment, terminating the original,

and returning the segment nuuber of the copy if the copy switch
was set. This allows the concept of a copy switch to move out of

ring zero.

ransparenc witches

When a segment is initiated in the current Multics
system, the address space manager sets two switches, called the
transparent usage switch and the transparent modification switch,
in its K3STE. These switches determine whether this process'
usage and modification of the segment 1is to be detectable to
other processes in the system. These transparency switches have
no influence upon our design except that in an implementation of
our design (as in our test implementation) these switches would
be kept in the KSTE of a segment and the address space manager
would retain the two lines of code from the current address space

manager that sets these switches.




Bibliography

Bensoussan, A., Clingen, C.T., and Daley, R.C., "The
Multics Virtual Memory: Concepts and Design,"™ CACM 15,

Corbats, F. Jd., J.H. Saltzer, and C.T. Clingen,
"Multics -- The First Seven Years," AFIPS Conf. Proc.
49 (1972 SJcC), AFIPS Press: Montvale, N.J.

Corbatdé F.J., and Vyssotsky, V.A., "Introduction and
Overview of the Multics System," AFIPS Conf. Proec. 271
(1965 FJCC), Spartan Books: Washington, D.C.

Dijkstra E.W., "Complexity controlled by hierarchical
ordering of function and variability," Software
Engineering (P. Naur and B. Randell, eds.), NATO
Scientific Affairs Division: Brussels, January 1969,
pp. 181-185.

Dijkstra E.W., "The structure of the WILHE™ -

mi:ltiprogramming system,"™ CACM 11, 5 (May 1968), pp.

Dahl, G.J., Dijkstra, E.W., and Hoare, (GEY T
Structured Programming, Academic Press: New York, N.Y.,
1972.

Fabry, R.S., "Capability-Based Addressing," CACM 17, 7
(July 1974), pp. 403-412.

Janson, P.A., "Removing the Dynamic Linker from the
Security Kernel of a Computing Utility,” MIT Project
MAC Technical Report TR-132, 19714,

IBM, "IBM OS Liikage Editor"™, 1IBM Systems Reference
Library, GC 28-b6538, January 1972.

Liskov, B. H., "A design methodclogy for reliable

software systems," AFIPS Conf. Proc. 41 (1972 FJCC),
AFIPS Press: Montvale, N.J.

Mills, H.D., "On the development of large reliable

programs," Proceedings of the IEEE Symposium on
Computer Software Reliability, 1973.

M.I.T. Project MAC, Introduction to Multiecs, MIT
Project MAC Technical Report TR-123, 1974,

Madnick, S.E., "Design Strategies for File Systems,"
MIT Project MAC Technical Report TR-78, 1970.

-128-




McCarthy, J., Abrahams, P., et Al s Lisp 1.8

Programmer's Manual, MIT Press: Cambridge, Mass.,
1965.

Naur, P. and B. Randell (Eds.), Software Engineering,
report Dby the NATO Science Committee, Garmisch,

Germany, 1968.

Organick, E.I., The Multics System: An Examiration of
its Structure, MIT Press: Cambridge, Mass., 1972.

parnas, D.L., "A technique for software module
specification with examples," CACM 15, 5 (May 1972),
PP. 330-336.

Rotenberg, L.J. "Making Computers Keep Secrets," MIT
Project MAC Technical Report TR-115, 1974.

Ritche, D.M. and Thompson K., "The UNIX Time-3haring
System," CACM 17, 7 (July 1974), pp. 365-375.

Schroeder, M.D., "Cooperation of Mutually Suspicious
Subsystems in a Computer Utility,"™ MIT Project MAC
Technical Report TR-104, 1972.

Schroeder, M.D. and J.H. Saltzer, "A Hardware
Architecture for Implementing Protection Rings," CACM
15, 3 (March 1972), pp. 157-170.

Saltzer, J.H., "Protection and the Control of
Information Sharing in Multies," CACM 17, 7 (July
1974), pp. 388-452,

Saltzer, J.H., and M.D. Schroeder, "The Protection of
Information 1in Computer Systems," IEEE Proc., 63, 9
(Sept. 1975), pp. 1278 - 1308.

Wirth, N., "Program Development by Stepwise
Refinement," CACM 14, 4 (April 1970), pp. 221-227.

Wirth, N., Systematic programming introduction,
Prentice-Hall: Englewood Cliffs, New Jersey, 1973.




